Chapitre 4

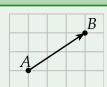
Notion de Vecteurs

I. Notion de vecteur

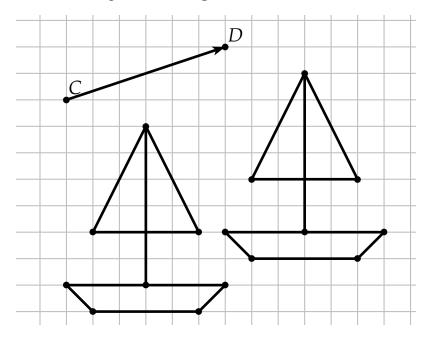
1) Vecteur et translation

Définition

la translation qui transforme A en B est appelée la translation de vecteur \overrightarrow{AB} . On peut aussi noter ce vecteur \overrightarrow{u} (en minuscule).



Exemple: Dessiner l'image du bateau par la translation de vecteur \overrightarrow{CD}

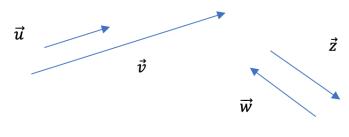


Un vecteur \overrightarrow{AB} est un outil mathématique qui matérialise la translation d'un point à un autre point. Il est défini par 3 caractéristiques :

- sa direction (son inclinaison)
- son sens (droite, gauche, haut, bas etc)
- sa norme (sa longueur) notée $\|\overrightarrow{AB}\|$

Année 2023-2024 Page 1/7

> Exemple :



- Les vecteurs qui ont la même direction sont : \vec{u} et \vec{v} ainsi que \vec{w} et \vec{z}
- Les vecteurs qui ont le même sens sont : \overrightarrow{u} et \overrightarrow{v}
- Les vecteurs qui ont la même norme sont : \vec{w} et \vec{z}

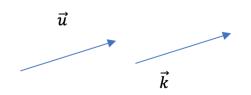
Remarque - Vecteur nul le vecteur qui matérialise la translation du point A au point A, c'està-dire sur lui-même, est noté $\overrightarrow{0}$ et s'appelle le vecteur nul. On a $\overrightarrow{AA} = \overrightarrow{0}$. Ce vecteur n'a ni direction ni sens, et a pour norme 0.

2) Vecteurs égaux

Deux vecteurs sont égaux s'ils ont :

- la même direction
- le même sens
- la même norme

> Exemple :



On note $\vec{u} = \vec{k}$

Remarque On a alors une infinité de représentations d'un vecteur \vec{u} . Pour en choisir un en particulier, il suffit de choisir un point du plan pour origine du vecteur. Par exemple, on dit que le vecteur \vec{AB} est le représentant du vecteur \vec{u} ayant pour origine A. On note $\vec{u} = \vec{AB}$ avec A l'origine de la flèche et B l'extrémité.

Page 2/7 Année 2023-2024

3) Vecteurs opposés

Définition

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont dits opposés s'ils ont :

- La même direction
- La même norme

MAIS des sens opposés On note $\vec{u} = -\vec{v}$ ou $\vec{v} = -\vec{u}$

Exemple: Dans l'exemple du 1) on a $\vec{w} = -\vec{z}$ (ou $\vec{z} = -\vec{w}$)

Propriété

Le vecteur opposé à \overrightarrow{AB} est le vecteur \overrightarrow{BA} : c'est-à-dire qu'il part de B pour aller vers A. On a donc : $\overrightarrow{AB} = -\overrightarrow{BA}$ ou encore $\overrightarrow{BA} = -\overrightarrow{AB}$

II. Opérations sur les vecteurs

1) Règle du parallélogramme

Propriété

Propriété : ABCD est un parallélogramme équivaut à dire que $\overrightarrow{AB} = \overrightarrow{DC}$

Démonstration

• On suppose que ABCD est un parallélogramme.

Montrons que $\overrightarrow{AB} = \overrightarrow{DC}$, c'est-à-dire que ces deux vecteurs ont la même direction, le même sens et la même norme.

ABCD est un parallélogramme, alors on sait que (AB) //(DC). Alors \overrightarrow{AB} et \overrightarrow{DC} ont la même direction.

ABCD est un parallélogramme, alors on sait que ses côtés opposés ont la même longueur. Donc AB = DC c'est-à-dire $\|\overrightarrow{AB}\| = \|\overrightarrow{DC}\|$

Par convention, on cite dans l'ordre les points ABC et D du parallélogramme ABCD donc \overrightarrow{AB} et \overrightarrow{DC} ont le même sens. On a donc bien $\overrightarrow{AB} = \overrightarrow{DC}$

• Supposons à présent que que $\overrightarrow{AB} = \overrightarrow{DC}$.

Montrons que ABCD est un parallélogramme. On peut montrer que ABCD est un quadrilatère qui a deux côtés opposés parallèles et égaux.

 $\overrightarrow{AB} = \overrightarrow{DC}$ donc on peut affirmer que ces deux vecteurs ont la même direction, donc les droites (AB) et (DC) sont parallèles; et la même norme, donc AB = DC.

ABCD est donc un quadrilatère qui a deux côtés opposés parallèles et égaux, on peut en conclure que c'est un parallélogramme.

Année 2023-2024 Page 3/7

2) Somme de vecteurs et relation de Chasles

Définition

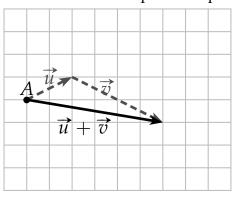
Soient deux vecteurs \vec{u} et \vec{v} du plan. On définit la somme $\vec{u} + \vec{v}$ comme un vecteur formé en mettant bout à bout les vecteurs \vec{u} et \vec{v} .

> Exemple :

Soient \vec{u} :

et \overrightarrow{v} :

Tracer le vecteur $\vec{u} + \vec{v}$ à partir du point A :



Propriété

Relation de Chasles : Soient A, B et C trois points du plan. On $a: \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

> Exemple :

1)
$$\overrightarrow{CB} + \overrightarrow{BA} = \overrightarrow{CA}$$

$$\overrightarrow{CB} + \overrightarrow{BC} = \overrightarrow{CC} = \overrightarrow{0}$$

$$\overrightarrow{AC} + \overrightarrow{CB} = \overrightarrow{AB}$$

4)
$$\overrightarrow{BC} + \overrightarrow{AB} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

5)
$$\overrightarrow{CB} - \overrightarrow{AB} = \overrightarrow{CB} + \overrightarrow{BA} = \overrightarrow{CA}$$

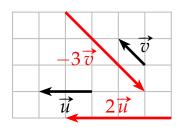
$$\overrightarrow{AB} + \overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{CB}$$

3) Multiplication par un réel

Comme pour les sommes, on peut construire des vecteurs multiples d'un autre vecteur en les mettant pour à bout.

> Exemples :

• Soient \vec{u} et \vec{v} deux vecteurs du plan. Construire $2\vec{u}$; $-3\vec{v}$



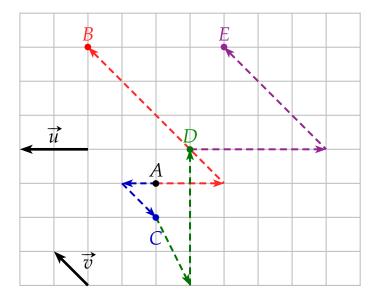
• Soit *A* un point. Placer les points *B*, *C*, *D* et *E* tels que :

•
$$\overrightarrow{AB} = -\overrightarrow{u} + 4\overrightarrow{v}$$

•
$$\overrightarrow{AC} = \frac{1}{2}\overrightarrow{u} - \overrightarrow{v}$$

•
$$\overrightarrow{CD} = \frac{1}{2}\overrightarrow{BA} + 4\overrightarrow{CA}$$

$$\overrightarrow{ED} = 2\overrightarrow{u} - 3\overrightarrow{v} \iff \overrightarrow{DE} = -2\overrightarrow{u} + 3\overrightarrow{v}$$



Propriété

On peut factoriser ou développer par un réel avec des vecteurs.

> Exemples :

- 1) $4(\vec{u} + \vec{v}) = 4\vec{u} + 4\vec{v}$
- 2) $4(2\vec{u}) = 8\vec{u}$
- 3) $5(2\vec{u} + 3\vec{v}) = 10\vec{u} + 15\vec{v}$

Remarque Dans le premier exemple précédent, que peut-on dire de la direction des vecteurs \vec{u} et $2\vec{u}$; \vec{v} et $-3\vec{v}$?

On peut voir que les vecteurs \vec{u} et $2\vec{u}$ ont la même direction. Il en est de même pour \vec{v} et $-3\vec{v}$

III. Coordonnées de vecteurs

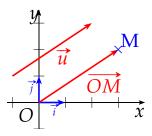
Année 2023-2024 Page 5/7

1) Définition

Définition

Soit $(O; \vec{\iota}, \vec{\jmath})$, un repère du plan. Pour tout vecteur $\vec{\iota}$, il existe un unique point M tel que $\vec{\iota} = \overrightarrow{OM}$. Les coordonnées du vecteur $\vec{\iota}$ dans ce repère sont alors celles du point M.

Si un point M a pour coordonnées $(x_M; y_M)$ alors on note \vec{u} $(x_M; y_M)$ ou \vec{u} $\begin{pmatrix} x_M \\ y_M \end{pmatrix}$



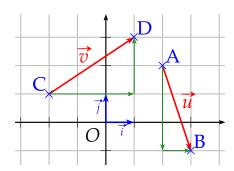
Propriété

Soit $\vec{u} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ 2 vecteurs. Alors : $\vec{u} = \vec{v} \iff x_1 = x_2$ et $y_1 = y_2$

(≆ Méthode - Déterminer graphiquement les coordonnées d'un vecteur)

Enoncé:

Déterminer graphiquement les coordonnées des vecteurs $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{CD}$



Solution:

Pour aller de A vers B, on effectue une translation de 1 carreau vers la droite (+1) et une translation de 3 carreaux vers le bas (-3). On a donc $\overrightarrow{AB} = 1 \times \overrightarrow{i} + (-3) \times \overrightarrow{j}$. Donc $\overrightarrow{AB} \begin{pmatrix} 1 \\ -3 \end{pmatrix}$. De même, $\overrightarrow{CD} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

2) Calcul des coordonnées d'un vecteur

Propriété

Dans un repère, soient A et B deux points de coordonnées A $(x_A; y_A)$ et B $(x_B; y_B)$. alors \overrightarrow{AB} a pour coordonnées \overrightarrow{AB} $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$.

Page 6/7 Année 2023-2024

Démonstration

La relation de Chasles nous donne :

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\overrightarrow{OA} + \overrightarrow{OB}$$

Comme $-\overrightarrow{OA}\begin{pmatrix} -x_A \\ -y_A \end{pmatrix}$ et $\overrightarrow{OB}\begin{pmatrix} x_B \\ y_B \end{pmatrix}$, on a alors par addition $\overrightarrow{AB}\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$.

(≆ Méthode - Coordonnées d'un vecteur)

Enoncé :

Soient A(-1; -5) et B(2; 3). Déterminer les coordonnées du vecteur \overrightarrow{AB}

Solution:

Les coordonnées de \overrightarrow{AB} sont données par : $x_B - x_A = 2 - (-1) = 3$ et $y_B - y_A = 3 - (-5) = 8$. Donc $\overrightarrow{AB} \begin{pmatrix} 3 \\ 8 \end{pmatrix}$.

3) Opérations sur les vecteurs

Propriété

Soit $\vec{u} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ 2 vecteurs. Alors :

•
$$\vec{u} + \vec{v} \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}$$

•
$$k\vec{u} \begin{pmatrix} k x_1 \\ k y_1 \end{pmatrix}$$

Æ Méthode - Utiliser les opérations sur les vecteurs

Enoncé:

Soient \vec{u} $\begin{pmatrix} 2 \\ -7 \end{pmatrix}$ et \vec{v} $\begin{pmatrix} -3 \\ 4 \end{pmatrix}$. Déterminer les coordonnées du vecteur $\vec{w} = 3\vec{u} - 2\vec{v}$

Solution

Les coordonnées de \vec{w} sont : $3 \times \begin{pmatrix} 2 \\ -7 \end{pmatrix} - 2 \times \begin{pmatrix} -3 \\ 4 \end{pmatrix}$

$$\vec{w} \begin{pmatrix} 6 - (-6) \\ -14 - 8 \end{pmatrix} \iff \vec{w} \begin{pmatrix} 12 \\ -22 \end{pmatrix}$$