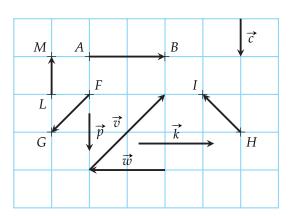
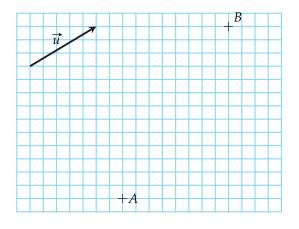
Chapitre 4


Exercices d'entrainement Notion de vecteur

I. Notion de vecteur

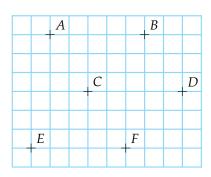
Exercice 1 (Vecteurs et translations)

On considère les vecteurs ci-contre représentés sur un quadrillage.


- 1) Repérer les vecteurs égaux, les vecteurs opposés et les vecteurs de même norme.
- 2) Quelle est l'image du point F par la translation de vecteur \overrightarrow{LM} ?
- **3)** Par quelles translations le point A est-il l'image du point B?

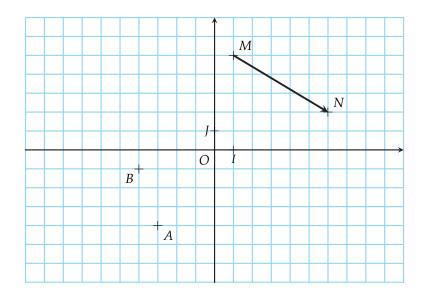
Exercice 2 (Tracer des vecteurs)

Dans le quadrillage ci-contre :

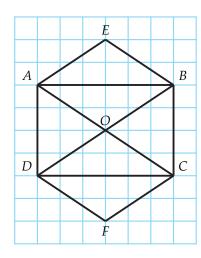

- 1) Tracer un représentant du vecteur \vec{u} ayant pour origine le point A.
- 2) Tracer un représentant du vecteur \vec{u} ayant pour extrémité le point B.
- 3) Tracer un vecteur \vec{v} de même longeur que \vec{u} mais différent de \vec{u} .
- 4) Tracer un vecteur \vec{w} de même direction, de même sens que \vec{u} , mais différents de \vec{u} .
- 5) Tracer un vecteur \vec{s} de même direction et de même longueur que \vec{u} mais différent de \vec{u} .

- Exercice 3 (Vecteurs égaux et vecteurs opposés) -

En utilisant le quadrillage, dire pour chaque égalité si elle est vraie ou si elle est fausse.


- 1) $\overrightarrow{AB} = \overrightarrow{EF}$
- 2) $\overrightarrow{CD} = -\overrightarrow{AB}$
- 3) $\overrightarrow{DA} = \overrightarrow{DB}$
- 4) $\overrightarrow{ED} = \overrightarrow{BD}$
- 5) $\overrightarrow{AE} = \overrightarrow{BF}$
- 6) $\overrightarrow{EF} = -\overrightarrow{DC}$

Année 2024-2025


II. Opérations sur les vecteurs

– Exercice 4 (Règle du parallélogramme) —

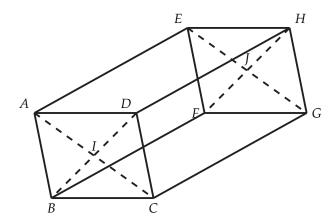
- 1) Tracer le point *C* image du point *A* par la translation de vecteur \overrightarrow{MN}
- **2)** Tracer le point *D* image du point *B* par la translation de vecteur \overrightarrow{MN} .
- 3) Quelle est la nature du quadrilatère ACDB? Justifier votre réponse.

- Exercice 5 (Somme de vecteurs) -

Calculer les sommes vectorielles indiquées en utilisant la figure ci-contre :

1)
$$\overrightarrow{AE} + \overrightarrow{AO}$$

2)
$$\overrightarrow{AE} + \overrightarrow{DF}$$


3)
$$\overrightarrow{BD} - \overrightarrow{BA} - \overrightarrow{AO}$$

4)
$$\overrightarrow{OC} - \overrightarrow{FC}$$

5)
$$\overrightarrow{DO} + \overrightarrow{BC} + \overrightarrow{AE}$$

6)
$$\overrightarrow{AB} + \overrightarrow{AD}$$

Exercice 6 (Somme de vecteurs et relation de Chasles) —

Sur la figure ci-dessus, formée de parallélogrammes juxtaposés, déterminer un représentant de :

- 1) $\overrightarrow{AD} + \overrightarrow{CF}$
- 2) $\overrightarrow{GC} + \overrightarrow{AC}$
- 3) $\overrightarrow{HE} + \overrightarrow{BC}$
- 4) $\overrightarrow{DE} \overrightarrow{DH}$
- 5) $\overrightarrow{GI} + \overrightarrow{BF}$
- 6) $\overrightarrow{DI} + \overrightarrow{II}$
- 7) $\overrightarrow{FG} \overrightarrow{AI}$

- 8) $\overrightarrow{IF} \overrightarrow{FI}$
- 9) $\overrightarrow{AI} + \overrightarrow{AE} + \overrightarrow{FI}$
- **10)** $\overrightarrow{AF} + \overrightarrow{HD} + \overrightarrow{BD}$
- 11) $\overrightarrow{JE} + \overrightarrow{FG} \overrightarrow{ID}$
- 12) $\overrightarrow{GI} \overrightarrow{DA} + \overrightarrow{BI}$
- 13) $\overrightarrow{FD} + \overrightarrow{IA} + \overrightarrow{CG} \overrightarrow{FH}$
- **14)** $\overrightarrow{ED} + \overrightarrow{AH} + \overrightarrow{CF} \overrightarrow{FH}$

Page 2/4 Année 2024-2025

Exercice 7 (Somme de vecteurs et relation de Chasles sans schéma) —

Simplifier les expressions suivantes en utilisant la relation de Chasles :

1)
$$\overrightarrow{AB} - \overrightarrow{AC} - \overrightarrow{CB}$$

3)
$$\overrightarrow{AB} - \overrightarrow{AC} + \overrightarrow{BC} - \overrightarrow{BA}$$

5)
$$2\overrightarrow{AB} - \overrightarrow{BC} - \overrightarrow{CA}$$

1)
$$\overrightarrow{AB} - \overrightarrow{AC} - \overrightarrow{CB}$$

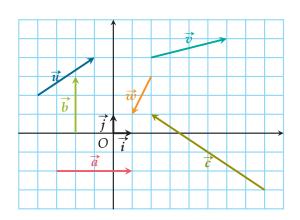
2) $\overrightarrow{BC} - \overrightarrow{BA} + \overrightarrow{BD} - \overrightarrow{BC}$
3) $\overrightarrow{AB} - \overrightarrow{AC} + \overrightarrow{BC} - \overrightarrow{BA}$
4) $\overrightarrow{AC} + 2\overrightarrow{CB} + \overrightarrow{BA}$

4)
$$\overrightarrow{AC} + 2\overrightarrow{CB} + \overrightarrow{BA}$$

Les point A,BC,D et E sont définis sur la droite graduée ci-dessous. Dans chaque cas, trouver le nombre réel k tel que $\vec{v} = k\vec{u}$

1)
$$\vec{v} = \overrightarrow{AB}$$
 et $\vec{u} = \overrightarrow{AE}$

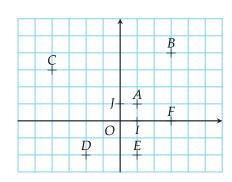
2)
$$\vec{v} = \overrightarrow{AD}$$
 et $\vec{u} = \overrightarrow{AE}$


3)
$$\vec{v} = \overrightarrow{EC} \text{ et } \vec{u} = \overrightarrow{AB}$$

4)
$$\vec{v} = \overrightarrow{CD}$$
 et $\vec{u} = \overrightarrow{AB}$

Coordonnées de vecteurs III.

Exercice 9 —


Lire les coordonnées des vecteurs \vec{a} , \vec{b} , \vec{c} , \vec{i} , \vec{j} , \vec{u} , \vec{v} et \vec{w} dans ce repère (O; \vec{i} , \vec{j})

____ Exercice 10 _____

Lire les coordonnées des vecteurs suivants.

- 1) \overrightarrow{AB}
- 3) \overrightarrow{CA}
- 5) \overrightarrow{AE}
- 2) \overrightarrow{AC} 4) \overrightarrow{DE} 6) \overrightarrow{AF}

IV. Calcul des coordonnées de vecteurs

—— Exercice 11 ————

Dans un repère $(O; \vec{t}, \vec{j})$, on considère les points E(-4; 3), F(2; -5), G(-4; 1) et le vecteur $\vec{u} \begin{pmatrix} 5 \\ -3 \end{pmatrix}$

- 1) Calculer les coordonnées des vecteurs \overrightarrow{EF} , \overrightarrow{FG} et \overrightarrow{EG}
- 2) Retrouver les coordonnées de M(x;y) telles que $\overrightarrow{EM} = \overrightarrow{u}$.

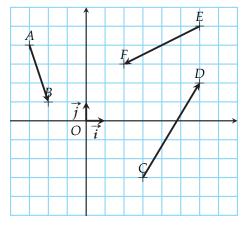
Exercice 12 —

On considère quatre points F(4;-2), G(-2;5), H(3;-4) et K(7;-5) dans un repère $(O;\overrightarrow{t},\overrightarrow{j})$.

- 1) Calculer les coordonnées des vecteurs \overrightarrow{FG} , \overrightarrow{GH} , \overrightarrow{HK} et \overrightarrow{KF} .
- 2) Déterminer de deux façons différentes les coordonnées du vecteur $\overrightarrow{FG} + \overrightarrow{GH}$.

— Exercice 13 —

Calculer les coordonnées du vecteur \overrightarrow{AB} dans chacun des cas suivants :


1)
$$A\left(\frac{2}{3}; \frac{1}{9}\right)$$
 et $B\left(1; -\frac{8}{9}\right)$

2)
$$A(-0,6;1,1)$$
 et $B(0,6;0,7)$

V. Opérations sur les vecteurs

Exercice 14 -

On considère les points et les vecteurs suivants dans un repère $(O; \vec{\imath}, \vec{\jmath})$.

- 1) Calculer les coordonnées de \vec{u} telles que $\vec{u} = \overrightarrow{AB} + \overrightarrow{CD}$. Construire le point I tel que $\overrightarrow{OI} = \overrightarrow{AB} + \overrightarrow{CD}$
- 2) Calculer les coordonnées de \vec{v} telles que $\vec{v} = \overrightarrow{AB} + \overrightarrow{EF}$. Construire le point J tel que $\overrightarrow{OJ} = \overrightarrow{AB} + \overrightarrow{EF}$
- 3) Calculer les coordonnées de \vec{w} telles que $\vec{w} = \overrightarrow{\text{CD}} + \overrightarrow{\text{EF}}$. Construire le point H tel que $\overrightarrow{\text{OH}} = \overrightarrow{\text{CD}} + \overrightarrow{\text{EF}}$.

Exercice 15

Soit $\vec{u} \begin{pmatrix} 5 \\ -4 \end{pmatrix}$ un vecteur du plan. Calculer les coordonnées des vecteurs $2\vec{u}$, $-5\vec{u}$, $\frac{1}{2}\vec{u}$ et $-\frac{2}{3}\vec{u}$.

Exercice 16 –

Dans le plan muni d'un repère orthonormal, on considère les points A, B et C respectivement de coordonnées (1;4), (4;6) et (2;3).

- 1) Quelles sont les coordonnées du point D tel que ABCD soit un parallélogramme?
- 2) Prouver que ABCD est aussi un losange.

Page 4/4 Année 2024-2025