Chapitre 6

Fonctions de référence

I. Fonction carré

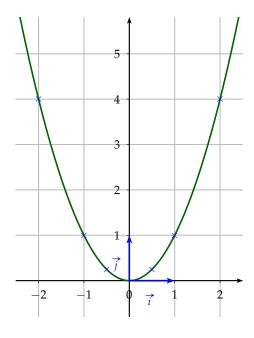
1) définition

Définition

La fonction carré f est définie sur \mathbb{R} par $f(x) = x^2$.

2) Représentation graphique

x	-2	-1	0	1	2
f(x)	4	1	0	1	4



Remarques

- Le tableau de valeurs n'est pas un tableau de proportionnalité. La fonction carré n'est donc pas une fonction linéaire.
- Dans un repère (O, I, J), la courbe d'équation $y = x^2$ de la fonction carré est appelée une parabole de sommet O.
- Dans un repère orthogonal, la courbe d'équation $y = x^2$ de la fonction carré est symétrique par rapport à l'axe des ordonnées. La fonction carré est donc une fonction paire.

3) Variations de la fonction carré

Propriété

La fonction carré f est décroissante sur l'intervalle $]-\infty;0]$ et croissante sur l'intervalle $[0;+\infty[$.

II. Fonction racine carrée

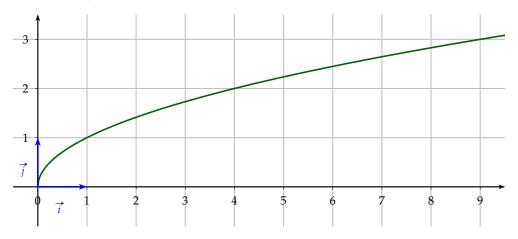
Année 2023-2024 Page 1/4

1) définition

Définition

La fonction racine carrée est la fonction f définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$.

2) Représentation graphique



Remarque La fonction racine carrée n'est pas définie pour des valeurs négatives.

3) Variations de la fonction racine carrée

Propriété

La fonction racine carrée est strictement croissante sur l'intervalle $[0; +\infty[$.

Démonstration

On pose : $f(x) = \sqrt{x}$.

Soit a et b deux nombres réels positifs tels que a < b.

$$f(b) - f(a) = \sqrt{b} - \sqrt{a} = \frac{(\sqrt{b} - \sqrt{a})(\sqrt{b} + \sqrt{a})}{\sqrt{b} + \sqrt{a}} = \frac{\sqrt{b}^2 - \sqrt{a}^2}{\sqrt{b} + \sqrt{a}} = \frac{b - a}{\sqrt{b} + \sqrt{a}}.$$

Or $\sqrt{b} + \sqrt{a} > 0$ et b - a > 0. Donc f(b) - f(a) > 0 Donc f(a) < f(b).

Ce qui prouve que f est croissante sur l'intervalle $[0; +\infty[$.

III. Fonction inverse

1) définition

Définition

La fonction inverse f est définie sur $\mathbb{R}\setminus\{0\}$ par $f(x)=\frac{1}{x}$.

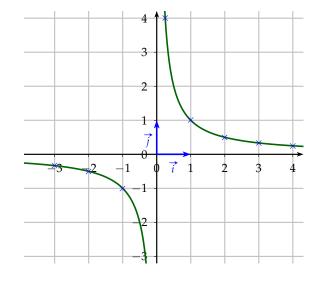
Page 2/4 Année 2023-2024

Remarques

- $\mathbb{R}\setminus\{0\}$ désigne l'ensemble des nombres réels sauf 0, c'est-à-dire $]-\infty;0[\ \cup\]0;+\infty[$. On peut aussi noter cet ensemble \mathbb{R}^* .
- La fonction inverse n'est pas définie en 0.

2) Représentation graphique

x	-2	-1	0,25	1	2	3
f(x)	-0,5	-1	4	1	0,5	$\frac{1}{3}$



Remarques

- Dans un repère (O, I, J), la courbe d'équation $y = \frac{1}{x}$ de la fonction inverse est une hyperbole de centre O.
- La courbe d'équation $y = \frac{1}{x}$ de la fonction inverse est symétrique par rapport à l'origine. La fonction inverse est donc une fonction impaire.

3) Variations de la fonction inverse

Propriété

La fonction inverse est décroissante sur l'intervalle $]-\infty;0[$ et décroissante sur l'intervalle $]0;+\infty[$.

Remarque La variation d'une fonction ne peut s'étudier que sur un intervalle. On ne peut donc pas évoquer de décroissance sur $]-\infty;0[\ \cup\]0;+\infty[$ qui n'est pas un intervalle mais conclure de manière séparée que la fonction inverse est décroissante sur l'intervalle $]-\infty;0[$ et décroissante sur l'intervalle $]0;+\infty[$.

IV. Fonction cube

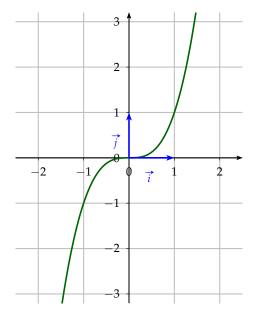
Année 2023-2024 Page 3/4

1) définition

Définition

La fonction cube est la fonction f définie sur \mathbb{R} par $f(x) = x^3$.

2) Représentation graphique



Remarque Dans un repère orthogonal, la courbe d'équation $y = x^3$ de la fonction cube est symétrique par rapport au centre du repère. La fonction cube est donc une fonction impaire.

3) Variations de la fonction cube

Propriété

La fonction cube est strictement croissante sur \mathbb{R} .

Cette propriété est admise.

Page 4/4 Année 2023-2024