Correction - Exercices obligatoires Dérivation

Nombre dérivé

Exercice 1

Soit h un nombre réel et soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 + 1$.

- **1)** Calculer f(1) et f(1+h).
- **2)** Montrer que f est dérivable en 1 et préciser f'(1).
- 3) À l'aide de la fonction dédiée de la calculatrice, contrôler le résultat du calcul précédent.

Exercice 2

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - x + 5$ et h un nombre réel.

- 1) Calculer f(-2) et f(-2+h), puis montrer que f est dérivable en -2 et préciser f'(-2).
- 2) À l'aide de la fonction dédiée de la calculatrice, contrôler le résultat du calcul précédent.

Exercice 3

Dans chaque cas, montrer que la fonction f est dérivable en a et calculer f'(a):

1)
$$f: x \mapsto \frac{1}{x-1}$$
 et $a = -1$;

$$f(-1) = \frac{1}{-1-1} = -\frac{1}{2}$$

$$f(-1+h) = \frac{1}{-1+h-1} = \frac{1}{-2+h}$$

$$f(-1+h) - f(-1) = \frac{1}{-2+h} + \frac{1}{2} = \frac{2+(-2+h)}{2(-2+h)} = \frac{h}{2(-2+h)}$$

$$\frac{f(-1+h) - f(-1)}{h} = \frac{h}{2(-2+h)} \times \frac{1}{h} = \frac{1}{2(-2+h)}$$

$$\lim_{h \to 0} \frac{f(-1+h) - f(-1)}{h} = \lim_{h \to 0} \frac{1}{2(-2+h)} = -\frac{1}{4}$$

$$-\frac{1}{4} \text{ est un nombre réel donc f est dérivable en } -1 \text{ et } f'(-1) = -\frac{1}{4}$$

2)
$$f: x \mapsto \frac{2}{x^2} \text{ et } a = 1;$$

$$f(1) = \frac{2}{1^2} = 2$$

$$f(1+h) = \frac{2}{(1+h)^2} = \frac{2}{1+2h+h^2}$$

$$f(1+h) - f(1) = \frac{2}{1+2h+h^2} - 2 = \frac{2-2(1+2h+h^2)}{1+2h+h^2} = \frac{-2h^2-4h}{1+2h+h^2}$$

$$\frac{f(1+h) - f(1)}{h} = \frac{-2h^2-4h}{1+2h+h^2} \times \frac{1}{h} = \frac{-2h-4}{1+2h+h^2}$$

$$\lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{-2h-4}{1+2h+h^2} = -4$$

$$-4 \text{ est un nombre réel donc f est dérivable en } -1 \text{ et } f'(1) = -4$$

Année 2024-2025 Page 1/6

3)
$$f: x \mapsto x^3 \text{ et } a = 2.$$

$$f(2) = 2^{3} = 8$$

$$f(2+h) = (2+h)^{3} = (4+4h+h^{2})(2+h) = 8+8h+2h^{2}+4h+4h^{2}+h^{3}$$

$$f(2+h) = h^{3}+6h^{2}+12h+8$$

$$f(2+h) - f(2) = h^{3}+6h^{2}+12h+8-8 = h^{3}+6h^{2}+12h$$

$$\frac{f(2+h) - f(2)}{h} = \frac{h^{3}+6h^{2}+12h}{h} = h^{2}+6h+12$$

$$\lim_{h\to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h\to 0} h^{2}+6h+12 = 12$$

12 est un nombre réel donc f est dérivable en 2 et f'(2) = 12

Equation réduite d'une tangente

Exercice 4

Soit une fonction f définie et dérivable sur \mathbb{R} telle que f(2)=3 et f'(2)=-2. Soit C_f sa courbe représentative. Déterminer l'équation réduite de la tangente à C_f au point d'abscisse 2.

on utilise la formule
$$y = f'(a)(x - a) + f(a)$$
 avec $a = 2$, $f'(a) = f'(2) = -2$ et $f(a) = f(2) = 3$ $y = -2(x - 2) + 3 = -2x + 4 + 3 = -2x + 7$

Exercice 5

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 2x + 1$ de courbe représentative C_f .

1) Vérifier par le calcul que f'(-1) = -4 et f'(2) = 2.

$$\begin{aligned} &\frac{f'(-1) = -4}{f(-1) = (-1)^2 - 2 \times (-1) + 1} = 4 \\ &f(-1+h) = (-1+h)^2 - 2(-1+h) + 1 = h^2 - 2h + 1 + 2 - 2h + 1 = h^2 - 4h + 4 \\ &f(-1+h) - f(-1) = h^2 - 4h + 4 - 4 = h^2 - 4h \\ &\frac{f(-1+h) - f(-1)}{h} = \frac{h^2 - 4h}{h} = h - 4 \\ &\lim_{h \to 0} \frac{f(-1+h) - f(-1)}{h} = \lim_{h \to 0} h - 4 = -4 \\ &-4 \text{ est un nombre réel donc f est dérivable en } -1 \text{ et } f'(-1) = -4 \end{aligned}$$

Année 2024-2025 Page 2/6

$$\frac{f'(2) = 2}{f(2) = (2)^2 - 2 \times 2 + 1} = 1$$

$$f(2+h) = (2+h)^2 - 2(2+h) + 1 = h^2 + 4h + 4 - 4 - 2h + 1 = h^2 + 2h + 1$$

$$f(2+h) - f(2) = h^2 + 2h + 1 - 1 = h^2 + 2h$$

$$\frac{f(2+h) - f(2)}{h} = \frac{h^2 + 2h}{h} = h + 2$$

$$\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} h + 2 = 2$$
2 est un nombre réel donc f est dérivable en 2 et $f'(2) = 2$

, ()

2) Déterminer l'équation réduite des tangentes à C_f aux points d'abscisses -1 et 2.

Tangente en -1

on utilise la formule
$$y = f'(a)(x - a) + f(a)$$
 avec $a = -1$, $f'(a) = f'(-1) = -4$ et $f(a) = f(-1) = 4$ $y = -4(x + 1) + 4 = -4x - 4 + 4 = -4x$

Tangente en 2

on utilise la formule
$$y = f'(a)(x - a) + f(a)$$
 avec $a = 2$, $f'(a) = f'(2) = 2$ et $f(a) = f(2) = 1$ $y = 2(x - 2) + 1 = 2x - 4 + 1 = 2x - 3$

3) Construire C_f , puis (T_{-1}) et (T_2) .

Exercice 6

Soit f une fonction dérivable sur \mathbb{R} et soit C_f sa courbe représentative dans un repère du plan. Le point A(4;-2) appartient à la courbe C_f . Sachant que la tangente T à la courbe C_f au point A passe par le point J(0;1), déterminer f'(4), puis l'équation de T.

$$f'(4) = \frac{y_J - y_A}{x_J - x_A} = \frac{1 - (-2)}{0 - 4} = -\frac{3}{4}$$
on utilise la formule $y = f'(a)(x - a) + f(a)$ avec $a = 4$, $f'(a) = f'(4) = -\frac{3}{4}$ et $f(a) = f(4) = -2$

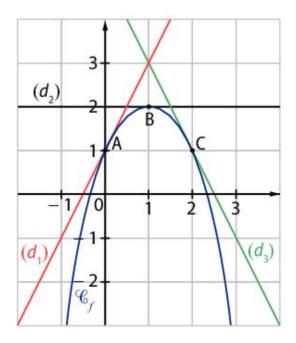
$$y = -\frac{3}{4}(x - 4) - 2 = -\frac{3}{4}x + 3 - 2 = -\frac{3}{4}x + 1$$

Détermination graphique du nombre dérivé

Exercice 7

La courbe de la fonction *f* ainsi que ses tangentes en *A*, *B* et *C* sont représentées ci-dessous.

Année 2024-2025 Page 3/6



Lire la valeur des nombres dérivés de f en les abscisses respectives de A, B et C.

$$f'(0) = \frac{2}{1} = 2$$
 $f'(1) = 0$ $f'(2) = \frac{-2}{1} = -2$

Exercice 8

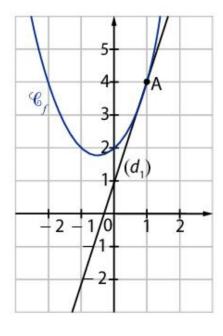
On note f la fonction définie sur \mathbb{R} et représentée ci-contre dans un repère. Le point A est le point de C_f d'abscisse 1 et (d_1) la tangente à C_f en A .

1) En utilisant la représentation graphique cicontre, déterminer f(1) et f'(1).

$$f(1) = 4$$
 $f'(1) = \frac{3}{1} = 3$

2) En déduire l'équation réduite de la tangente (d_1) à C_f en A .

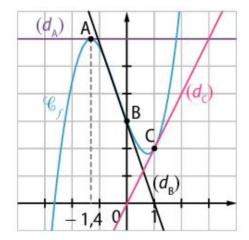
on utilise la formule
$$y = f'(a)(x - a) + f(a)$$
 avec $a = 1$, $f'(a) = f'(1) = 3$ et $f(a) = f(1) = 4$
 $y = 3(x - 1) + 4 = 3x - 3 + 4 = 3x + 1$



Exercice 9

La courbe de la fonction f ainsi que quelques-unes de ses tangentes sont représentées ci-dessous :

Année 2024-2025 Page 4/6



1) Lire la valeur des <u>nombres suivants</u>: f(0), f'(0), f(1), f'(1), f(-1,4) et f'(-1,4).

$$f(0) = 3 f'(0) = \frac{-3}{1} = -3$$

$$f(1) = 2 f'(1) = \frac{2}{1} = 2$$

$$f(-1,4) = 6 f'(-1,4) = 0$$

2) Rédiger une méthode permettant de lire graphiquement f(a) et f'(a).

Fonctions dérivées

Exercice 10

Pour chacune des fonctions suivantes définies sur l'intervalle I, déterminer sa dérivée.

1)
$$f(x) = 3x^2 - 4x + 3$$
; $I = \mathbb{R}$

2)
$$f(x) = -4x^4 + 3x^3 - 2x^2 + x$$
; $I = \mathbb{R}$

3)
$$f(x) = x^3 - 2x^2 + 3x - 4$$
; $I = \mathbb{R}$

4)
$$f(x) = \sqrt{x} + x$$
; $I = [0; +\infty[$

5)
$$f(x) = x^2 - \frac{1}{x}$$
; $I = \mathbb{R}^*$

Exercice 11

Pour chacune des fonctions suivantes définies sur l'intervalle I, déterminer sa dérivée.

1)
$$f(x) = \frac{1}{x}(x^3 - 1)$$
; $I = \mathbb{R}^*$

2)
$$f(x) = x^2(\sqrt{x} + 1); I = [0; +\infty[$$

Exercice 12

Pour chacune des fonctions suivantes définies sur l'intervalle I, déterminer sa dérivée.

1)
$$f(x) = \frac{1}{x^2 + 1}$$
; $I = \mathbb{R}$

2)
$$f(x) = \frac{1}{\sqrt{x}}$$
; $I = 0$; $+\infty$

Exercice 13

Pour chacune des fonctions suivantes définies sur l'intervalle I, déterminer sa dérivée.

1)
$$f(x) = \frac{x+1}{x-2}$$
; $I = \mathbb{R} \setminus \{2\}$

2)
$$f(x) = \frac{x^3 + 1}{x^2 - 1}$$
; $I = \mathbb{R} \setminus \{-1, 1\}$

3)
$$f(x) = \frac{x^2 + x + 1}{\sqrt{x}}; I =]0; +\infty[$$

Exercice 14

Pour chacune des fonctions suivantes définies sur l'intervalle I, déterminer sa dérivée.

1)
$$f(x) = (1 - 2x)^4$$
; $I = \mathbb{R}$

2)
$$f(x) = \sqrt{2x+1}$$
; $I = \left[\frac{-1}{2}; +\infty\right[$

Année 2024-2025 Page 6/6