Chapitre 1

Fonctions polynôme de dégré 2

I. Forme développée

Définition	

Remarque Une fonction polynôme de degré 2 s'appelle également fonction trinôme du second degré ou par abus de langage « *trinôme* ».

P Manipulation

Sur le logiciel GeoGebra créer trois curseurs a, b, c puis dans la ligne de saisie taper $f(x) = ax^2 + bx + c$. On obtient ainsi le tracé de la courbe représentative de la fonction f définie par $f(x) = ax^2 + bx + c$ on s'intéressera aux cas où $a \ne 0$. (si a = 0f est une fonction affine)

□ Définition

La courbe représentative d'une fonction polynôme du second degré est appelée

> Exemple:

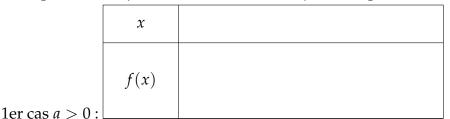
- $f(x) = 2x^2 5x + 2$ ou g(x) = (x 4)(5 2x) sont des fonctions polynômes de degré 2.
- h(x) = 5x 3 est une fonction polynôme de degré 1.
- $i(x) = 5x^4 7x^3 + 3x 8$ est une fonction polynôme de degré 4.

Année 2025-2026 Page 1/4

Variations de la fonction trinôme

P Manipulation

Sur le logiciel GeoGebra (), reprendre la manipulation précédente et prendre un a > 0. Faire alors varier b et c. Que constatez-vous quant variations de f? Et si on prend un autre a strictement positif? Conjecturer les variations de f en complétant le tableau de variation suivant :



P Manipulation

Sur le logiciel GeoGebra (), reprendre la manipulation précédente et prendre un a < 0. Faire alors varier b et c. Que constatez-vous quant variations de f? Et si on prend un autre a strictement négatif? Conjecturer les variations de f en complétant le tableau de variation suivant :

	x	
	f(x)	
2ème cas $a < 0$:		

Nous retiendrons donc:

Propi	iété							
Si $a > 0$				Si $a < 0$				
x	$-\infty$	x_S	+∞	x	$-\infty$	x_S	+∞	
f(x)				f(x)				

Définition

le point de coordonnés $(x_S; y_S)$ avec y_S l'extremum de f sur P est appelé sommet de la parabole.

Page 2/4 Année 2025-2026

II. Forme canonique d'une fonction polynôme de degré 2

☼ Propriété
Toute fonction polynôme f de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ peut s'écrire sous
la forme :

Démonstration

Faite sur le cahier.

P Manipulation

Sur le logiciel GeoGebra créer trois curseurs a, α , β puis dans la ligne de saisie taper $f(x) = a(x-\alpha)^2 + \beta$. On obtient ainsi le tracé de la courbe représentative de la fonction f définie par $f(x) = a(x-\alpha)^2 + \beta$. Compléter alors le cas général ci-dessous.

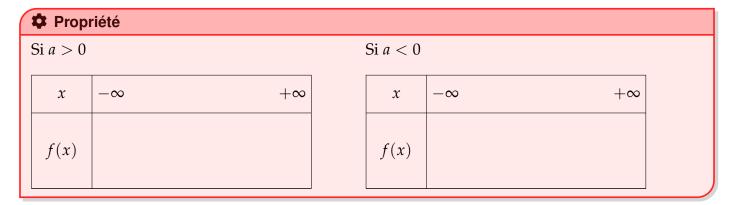
Propriété

Le sommet S a pour coordonnées

Propriété

La parabole possède un Il s'agit de la droite d'équation

Avec ces nouvelles données, on peut maintenant compléter notre tableau de variations :



Année 2025-2026 Page 3/4

III. passage de la forme développée à la forme canonique

Pour passer de la forme développée à la forme canonique, il existe 2 méthodes

1) passer à la forme canonique à l'aide d'identité remarquable

⊞ Méthode - Déterminer la forme canonique d'une fonction polynôme de degré 2

Enoncé: Soit la fonction f définie sur \mathbb{R} par : $f(x) = 2x^2 - 20x + 10$. On veut exprimer la fonction f sous sa forme canonique. Réponse :
f doit être de la forme : $f(x) = a(x - \alpha)^2 + \beta$ ou a , α et β sont des nombres réels.
On commence par mettre le a en facteur pour les 2 termes avec des x
On fait ensuite apparaître le 3ème terme d'une identité remarquable $(a^2 \pm 2ab + b^2)$
On factorise l'identité remarquable et on regroupe les termes qui restent ensemble.
\dots est la forme canonique de f .

2) Cas général

🌣 Propriété

Exemple: Soit la fonction f définie sur \mathbb{R} par : $f(x) = 3x^2 + 60x - 20$. On veut exprimer la fonction f sous sa forme canonique.

On commence par calculer α : $\alpha = -\frac{b}{2a} = -\frac{60}{2 \times 3} = -10$.

Pour calculer β , on a 2 possibilités : soit on utilise la formule ci-dessus, soit on dit que $\beta = f(\alpha)$ et on remplace α par α dans l'expression α

Page 4/4 Année 2025-2026