Chapitre 01 - Fonctions du second degré Exercices obligatoires

Exercice 1 - 7 p 96

Préciser les coefficients des fonctions polynômes du second degré suivantes :

1)
$$f: x \mapsto -3x^2 + 1$$

3)
$$f: x \mapsto \sqrt{2}x^2 - 3x$$

2)
$$f: x \mapsto 4x - 3 + 8x^2$$

4)
$$f: x \mapsto 5(3-x)x$$

5)
$$f: x \mapsto \frac{x^2 - 6x + 5}{3}$$

Exercice 2 - 8 p 96

Les fonctions suivantes sont-elles écrites sous forme canonique? Si oui, préciser les valeurs de α et de β .

1)
$$f: x \mapsto -3x^2 + 1$$

3)
$$f: x \mapsto (2x-6)^2 + 7$$

2)
$$f: x \mapsto -13 + (x+5)^2$$

4)
$$f: x \mapsto 1 - 8(x - 3)^2$$

Exercice 3 - 9 p 96

Dans chaque cas, calculer les nombres α et β liés à la fonction polynôme du second degré :

1)
$$f: x \mapsto x^2 + x - 11$$

3)
$$f: x \mapsto -4 - 6x^2 + 8x$$

5)
$$f: x \mapsto -\frac{3}{7}x^2 + 5x + \frac{4}{3}$$

2)
$$f: x \mapsto -x^2 + 7$$

4)
$$f: x \mapsto \frac{2}{3}x^2 - \frac{1}{3}x - 1$$

6)
$$f: x \mapsto 8x^2 - \sqrt{2}x$$

Exercice 4 - 10 p 96

Associer à chaque fonction polynôme de degré 2 (définie par une égalité) son écriture canonique.

Fonction

Écriture canonique

1)
$$f_1(x) = 2(-5+2x^2)$$

2) $f_2(x) = (2x+3)(2x+9)$

a)
$$4(x-3)^2 - 10$$

b) $4(x-3)^2 + 10$

2)
$$f_2(x) = (2x + 3)(2x + 9)$$

c)
$$4(x+3)^2-9$$

3)
$$f_3(x) = 4x^2 - 24x + 26$$

$$(74(x+3) -$$

4)
$$f_4(x) = (2x - 6)^2 + 10$$

d)
$$4x^2 - 10$$

Exercice 5 - 11 p 96

Donner l'écriture canonique des fonctions polynômes du second degré suivantes :

1)
$$f: x \mapsto x^2 - 4x$$

3)
$$f: x \mapsto -5x^2 + 7x$$

2)
$$f: x \mapsto x^2 + 3x$$

4)
$$f: x \mapsto 3x^2 - 2x + 1$$

Exercice 6

Donner l'écriture canonique des fonctions polynômes du second degré suivantes :

1)
$$f(x) = 2x^2 - 8x + 6$$

2)
$$g(x) = -3x^2 + 12x - 9$$

Vérifiez vos résultats en utilisant les formules $\alpha = -\frac{b}{2a}$ et $\beta = f(\alpha)$.

Exercice 7

Trouvez les coordonnées du sommet et l'équation de l'axe de symétrie pour les fonctions suivantes :

1)
$$f(x) = x^2 - 4x + 4$$

2)
$$g(x) = -x^2 + 6x - 5$$

Exercice 8 - 12 p 96

Donner les variations sur \mathbb{R} de la fonction f définie par $f(x) = 8(x-2)^2 + 11$.

Exercice 9 - 13 p 96

La fonction f polynôme de degré 2 est définie par $x \mapsto 2x^2 - 3x + 1$. Donner les variations de f sur \mathbb{R} .

Exercice 10 - 14 p 96

Proposer une expression d'une fonction f polynôme de degré 2 telles que ses variations soient celles données

dans le tableau ci-dessous :

x	$-\infty$	3	+∞
varia- tions de <i>f</i>		-4	

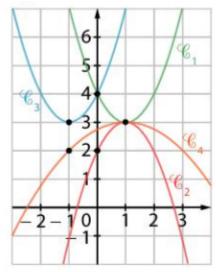
Exercice 11 - 15 p 96

Déterminer une expression de la fonction g polynôme du second degré telle que g(2)=-3 et dont les variations sont données dans le tableau ci-dessous :

x	$-\infty$	-2 +0	∞
varia- tions de <i>f</i>		6	

Exercice 12 - 18 p 96

Parmi les cinq fonctions polynômes du second degré, quelle est la seule qui ne peut pas être associée à une des quatre paraboles C_1 , C_2 , C_3 et C_4 ? Justifier.


1)
$$f_1: x \mapsto (x+1)^2 + 3$$

2)
$$f_2: x \mapsto -(x-1)^2 + 3$$

3)
$$f_3: x \mapsto x^2 - 2x + 4$$

4)
$$f_4: x \mapsto -x^2 - 2x + 2$$

5)
$$f_5: x \mapsto -\frac{1}{4}x^2 + \frac{1}{2}x + \frac{11}{4}$$

Exercice 13

Une entreprise fabrique des boîtes en carton. Le coût de production C(x) en euros pour x boîtes est donné par $C(x) = 0,5x^2 - 10x + 100$. Trouvez le nombre de boîtes à produire pour minimiser le coût de production.

Exercice 14

Un jardinier veut construire un parterre de fleurs en forme de parabole. La hauteur h(x) en mètres du parterre est donnée par $h(x) = -x^2 + 4x$. Trouvez la largeur maximale du parterre et la hauteur maximale atteinte.

Exercice 15 - Optimisation en économie

Une entreprise produit et vend un produit. Le coût total de production C(x) en euros pour x unités est donné par C(x) = 0, $1x^2 + 50x + 1000$. Le revenu total R(x) en euros pour la vente de x unités est donné par R(x) = -0, $2x^2 + 150x$. Trouvez le nombre d'unités à produire et vendre pour maximiser le profit, et calculez ce profit maximal.

Année 2025-2026 Page 2/2