Chapitre 01 - Dérivation Correction Exercices obligatoires

Exercice 1

Pour chaque fonction f, calculer f'(x).

1)
$$f(x) = \frac{1}{3}x^3 - 6x + 5e^x + \frac{3}{x} \operatorname{sur} \mathbb{R}^*.$$

$$f'(x) = x^2 - 6 + 5e^x - \frac{3}{x^2} = \frac{x^4 - 6x^2 + 5x^2e^x - 3}{x^2}$$

2)
$$f(x) = 2e^{3x-1} \operatorname{sur} \mathbb{R}$$
.

$$f(x) = 2e^{u(x)}$$
 avec $u(x) = 3x - 1$ donc $u'(x) = 3$
 $f'(x) = 2u'(x)e^{u(x)} = 2 \times 3 \times e^{3x-1} = 6e^{3x-1}$

3)
$$f(x) = (5x+4)^2 \text{ sur } \mathbb{R}$$
.

$$f(x) = u(x)^2$$
 avec $u(x) = 5x + 4$ donc $u'(x) = 5$
 $f'(x) = 2u'(x)u(x) = 2 \times 5 \times (5x + 4) = 10(5x + 4)$

4)
$$f(x) = \sqrt{1 + x^2} \text{ sur } \mathbb{R}.$$

$$f(x) = f(u(x)) \text{ avec } u(x) = 1 + x^2 \text{ donc } u'(x) = 2x$$

$$\text{et } f(X) = \sqrt{X} \text{ donc } f'(X) = \frac{1}{2\sqrt{X}}$$

$$f'(x) = u'(x)f'(u(x)) = 2x \times \frac{1}{2\sqrt{x^2 + 1}}$$

Exercice 2 — Dériver avec des fonctions de référence

1)
$$f(x) = 3x^2 - 5x + 4$$
 pour tout x réel.

$$f'(x) = 6x - 5$$

2)
$$f(x) = \frac{5}{3}x^3 - \frac{1}{2}x^2 + 8$$
 pour tout x réel.

$$f'(x) = 5x^2 - x$$

3)
$$f(x) = -x^3 + 5x^2 + \frac{4}{x}$$
 pour tout $x \neq 0$.

$$f'(x) = -3x^2 + 10x - \frac{4}{x^2} = \frac{-3x^4 + 10x^3 - 4}{x^2}$$

4)
$$f(x) = 3e^x - 5x^2 + 4$$
 pour tout *x* réel.

$$f'(x) = 3e^x - 10x$$

5)
$$f(x) = (3x - 5)(x + 1)$$
 pour tout x réel.

$$f(x) = u(x) \times v(x) \text{ avec } u(x) = 3x - 5 \text{ et}$$

$$v(x) = x + 1$$

$$donc u'(x) = 3 \text{ et } v'(x) = 1$$

$$d'ou f'(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$f'(x) = 3(x + 1) + 1(3x - 5) = 6x - 2$$

6)
$$f(x) = \frac{4x}{x^2 + 1}$$
 pour tout x réel.

$$f(x) = \frac{u(x)}{v(x)} \text{ avec } u(x) = 4x \text{ et } v(x) = x^2 + 1$$

$$\text{donc } u'(x) = 4 \text{ et } v'(x) = 2x$$

$$\text{d'ou } f'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{v^2(x)}$$

$$f'(x) = \frac{4(x^2 + 1) - 2x(4x)}{(x^2 + 1)^2} = \frac{-4x^2 + 4}{(x^2 + 1)^2}$$

— Exercice 3 − Dériver e^u —

1) $f(x) = e^{-x}$ pour tout *x*.

$$f'(x) = -e^{-x}$$

2) $f(x) = 10e^{-0.5x} pour tout x$.

$$f'(x) = 10 \times -0.5e^{-0.5x} = -5e^{-0.5x}$$

3) $f(x) = \frac{e^x}{e^{-x} + 1}$ pour tout *x*.

$$f(x) = \frac{u(x)}{v(x)} \text{ avec } u(x) = e^x \text{ et } v(x) = e^{-x} + 1$$

$$\text{donc } u'(x) = e^x \text{ et } v'(x) = -e^{-x}$$

$$\text{d'ou } f'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{v^2(x)}$$

$$f'(x) = \frac{e^x (e^{-x} + 1) + e^{-x} \times e^x}{(e^{-x} + 1)^2} = \frac{e^x + 2}{(e^{-x} + 1)^2}$$

1) $f(x) = (3x - 4)^2$ pour tout *x* réel.

$$f'(x) = 2 \times 3(3x - 4) = 6(3x - 4)$$

2) $f(x) = \sqrt{x^2 + 4}$ pour tout x réel.

$$f'(x) = \frac{2x}{2\sqrt{x^2 + 4}} = \frac{x}{\sqrt{x^2 + 4}} = \frac{x\sqrt{x^2 + 4}}{x^2 + 4}$$

Exercice 5 – Signe de la dérivée –

1) Calculer la dérivée de la fonction f dérivable sur \mathbb{R} définie par $f(x) = xe^{-0.5x}$.

$$f(x) = u(x) \times v(x)$$
 avec $u(x) = x$ et $v(x) = e^{-0.5x}$ donc $u'(x) = 1$ et $v'(x) = -0.5e^{-0.5x}$ d'ou $f'(x) = u'(x) \times v(x) + u(x) \times v'(x)$ $f'(x) = 1e^{-0.5x} - x \times 0.5e^{-0.5x} = (1 - 0.5x)e^{-0.5x}$

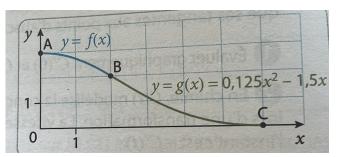
2) Déterminer le signe de f'(x).

le signe de f'(x) est celui de 1-0.5x car l'exponentielle est toujours positive. 1-0.5x est une fonction affine qui s'annule pour x=2 avec m=-0.5<0. 1-0.5x et f'(x) sont donc positives sur $]-\infty;2]$ puis négatives ensuite.

Année 2025-2026 Page 2/5

Exercice 6 — Un problème de raccord -

Pour terminer une rampe d'accès à un parking, on souhaite raccorder la portion existante, représentée en vert sur le graphique, avec un dernier tronçon, en bleu, allant de A à B(2;2). Les deux tronçons doivent se raccorder parfaitement, sans rupture de pente et la descente démarrer doucement en A(0;3) avec une pente nulle. L'unité graphique représente $1\,\mathrm{m}$.



1) Interpréter ces contraintes par des conditions que doit respecter la fonction f.

Le tronçon en bleu rejoint le point B, donc f(2) = 2. La pente doit être la même en B des 2 côtés donc f'(2) = g'(2). La pente est nulle au départ donc f'(0) = 0 et elle démarre du point A donc f(0) = 3

2) Vérifier que la fonction f définie par $f(x) = -0.25x^2 + 3$ remplit toutes ces conditions.

$$f'(x) = -0.5x$$
 et $g'(x) = 0.25x - 1.5$
 $f(2) = -0.25 \times 2^2 + 3 = 2$
 $f'(2) = -0.5 \times 2 = -1$ et $g'(2) = 0.25 \times 2 - 1.5 = -1 = f'(2)$
 $f(0) = -0.25 \times 0^2 + 3 = 3$ et $f'(0) = -0.5 \times 0 = 0$.
Toutes les conditions sont respectées avec la fonction $f(x)$ proposée.

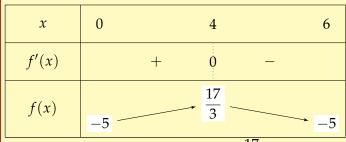
─ Exercice 7 ─ Étude d'une fonction polynôme

Soit *f* la fonction définie sur [0; 6] par $f(x) = -\frac{1}{3}x^3 + 2x^2 - 5$.

1) Calculer f'(x) et étudier son signe.

$$f'(x) = -x^2 + 4x = x(4 - x)$$
.
Comme $x \ge 0$, $f'(x)$, a même signe que $4 - x$.
Donc $f'(x) \ge 0$ sur. [0;4] et $f'(x) \le 0$ sur. [4;6].

2) Compléter le tableau de variations de f et préciser son maximum.

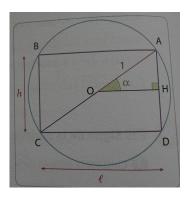


Le maximum de la fonction est donc $\frac{17}{3}$ atteint pour x = 4.

Année 2025-2026 Page 3/5

- Exercice 8 — Résistance d'une poutre -

Dans un tronc d'arbre on découpe une poutre en forme de parallélépipède rectangle dont une section rectangulaire est représentée ci-contre. La résistance à la flexion de cette poutre varie comme le produit $\ell \times h^2$ où ℓ et h sont la longueur et la largeur de la poutre. On prend OA = 1 unité de longueur.



1) Montrer que $h^2 = 4 - \ell^2$,

On utilise le théorème de Pythagore dans le triangle ABC.
$$AB^2 + BC^2 = AC^2 \iff \ell^2 + h^2 = 2^2 \iff h^2 = 2^2 - \ell^2 \iff h^2 = 4 - \ell^2$$

2) En déduire que $\ell h^2 = f(\ell)$ où $f(x) = -x^3 + 4x$ pour $x \ge 0$. $\ell h^2 = \ell(4 - \ell^2) = -\ell^3 + 4\ell = f(\ell) \text{ avec } f(x) = -x^3 + 4x$

a) Compléter le tableau de variations de f sur [0;2].

$$f'(x) = -3x^2 + 4$$

$$f'(x) = 0 \iff -3x^2 + 4 = 0 \iff x^2 = \frac{4}{3} \iff x = \pm \frac{2}{\sqrt{3}}$$

$$x \quad -\infty \quad -\frac{2}{\sqrt{3}} \quad \frac{2}{\sqrt{3}} \quad +\infty$$

$$f'(x) \quad - \quad 0 \quad + \quad 0 \quad -$$

$$x \quad 0 \quad \frac{2}{\sqrt{3}} \quad 2$$

$$f'(x) \quad + \quad 0 \quad -$$

b) Comment choisir (pour que la poutre résiste au mieux à la flexion?

Il faut prendre pour ℓ la valeur de x ou on atteint le maximum de f, soit $\ell = x = \frac{2}{\sqrt{3}}$

c) Quel est l'angle α correspondant à 0,1° près?

Dans le triangle ABC
$$\cos(\alpha) = \frac{AB}{AC} = \frac{\ell}{2}$$
 d'ou $\alpha = \arccos\left(\frac{\ell}{2}\right) \approx 54,7^{\circ}$

- Exercice 9 — Evolution d'une population

La population d'une ville est modélisée depuls 2020 par la fonction f donnée par $f(t)=\frac{40t}{t^2+25}+10$, oú t désigne le temps écoulé depuis le 1er janvier 2020, en années, et f(t) la population en dizaines de milliers d'habitants.

1) Montrer que $f'(t) = 40 \frac{(5-t)(5+t)}{(t^2+25)^2}$,

Année 2025-2026 Page 4/5

$$f(t) = \frac{u(t)}{v(t)} \text{ avec } u(t) = 40t \text{ et } v(t) = t^2 + 25$$

$$\text{donc } u'(t) = 40 \text{ et } v'(t) = 2t$$

$$\text{d'ou } f'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{v^2(x)}$$

$$f'(x) = \frac{40(t^2 + 25) - 2t(40t)}{(t^2 + 25)^2} = \frac{40(t^2 + 25 - 2t^2)}{(t^2 + 25)^2} = \frac{40(5 - t)(5 + t)}{(t^2 + 25)^2} = \frac{40(5 - t)(5 + t)}{(t^2 + 25)^2} = \frac{40(5 - t)(5 + t)}{(t^2 + 25)^2}$$

2) En déduire le tableau de variations de f sur [0;15],

x	$-\infty$		-5		5		+∞
f'(x)		_	0	+	0	_	
х	0		5		15		
f'(x)		+	0	-			
f(x)	10		14		12,4		

3) Quelle sera la population maximale dans ce modèle et en quelle année sera-t-elle atteinte?

La population maximale est atteinte pour, t = 5, donc en 2025, et correspond à 14 dizaines de milliers d'h soit 140 000 habitants.

Année 2025-2026 Page 5/5