Chapitre 2

Thème 1 : Modèles définis par une fonction Continuité d'une fonction

I. Notion de continuité

n Point histoire

Le mathématicien allemand Karl Weierstrass (1815; 1897) apporte les premières définitions rigoureuses au concept de limite et de continuité d'une fonction.

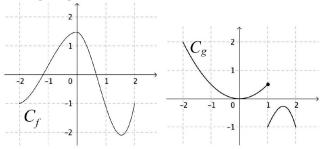
1) Définition

© Définition
Définition intuitive :

★ Méthode - Reconnaître graphiquement une fonction continue

Enoncé:

Étudier graphiquement la continuité des fonctions f et g définies et représentées ci-dessous sur l'intervalle [-2;2].



Réponse:

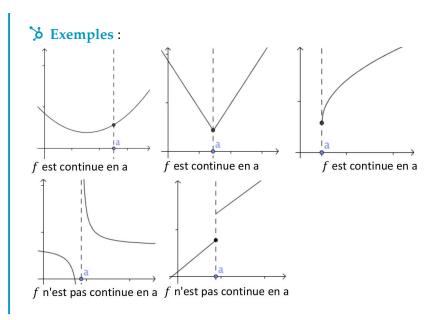
•

Année 2025-2026 Page 1/6

\$ Pi	'n	n	ri	át	á
Г	U	ν	ш	Cι	C

Soit une fonction f définie sur un intervalle I contenant un réel a.

- •



2) Cas des fonctions de référence

Les fonctions suivantes sont continues sur l'intervalle donné.

Fonction	Intervalle		
x	\mathbb{R}		
$x^n (n \in \mathbb{N})$	\mathbb{R}		
Polynôme	\mathbb{R}		
e^{x}	\mathbb{R}		
\sqrt{x}	[0; +∞[
$\frac{1}{x}$	$]-\infty;0[\text{ et }]0;+\infty[$		

3) Opérations sur les fonctions continues :

Proprie	etés
f et g sont	deux fonctions continues sur un intervalle <i>I</i> .
•	
•	

Page 2/6 Année 2025-2026

Remarque Dans la pratique, les flèches obliques d'un tableau de variations traduisent la continuité et la stricte monotonie de la fonction sur l'intervalle considéré.

Enoncé:

On considère la fonction f définie sur \mathbb{R} par $f(x) = \begin{cases} -x+2, \text{ pour } x < 3\\ x-4, \text{ pour } 3 \leq x < 5\\ -2x+13, \text{ pour } x \geq 5 \end{cases}$

La fonction f est-elle continue sur \mathbb{R} ?

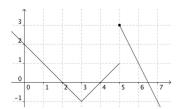
Réponse:

Les fonctions $x \mapsto -x + 2$, $x \mapsto x - 4$ et $x \mapsto -2x + 13$ sont des fonctions polynômes donc continues sur \mathbb{R} .

Ainsi la fonction f est continue sur $]-\infty;3[$, sur [3;5[et sur $[5;+\infty[$.

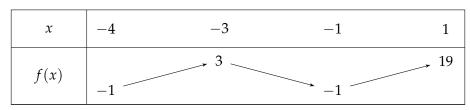
Étudions alors la continuité de f en 3 et en 5 :

En représentant la fonction f, on peut observer graphiquement le résultat précédent.



II. Théorème des valeurs intermédiaires

 \red Exemple: On donne le tableau de variations de la fonction f.



Année 2025-2026 Page 3/6

Il est possible de lire dans le tableau, le nombre de solutions éventuelles pour des équations du type f(x) = k:

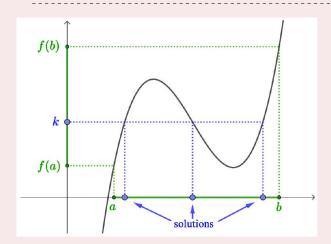
- L'équation f(x) = 18 possède 1 solution comprise dans l'intervalle]-1;1[.
- L'équation f(x) = 0 possède 3 solutions chacune comprise dans un des intervalles]-4; -3[]-,3;-1[et]-1;1[.
- L'équation f(x) = -3 ne possède pas de solution.
- L'équation f(x)=3 possède 2 solutions : I'une égale à -3 , l'autre comprise dans l'intervalle]-1; 1[.

Théorème

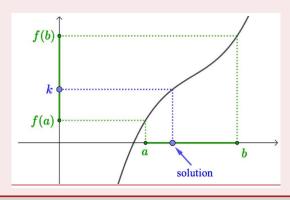
Théorème des valeurs intermédiaires :

On considère la fonction f continue sur l'intervalle [a; b].

•



•



P Manipulation

Dans la pratique :

Pour démontrer que l'équation f(x) = 0 admet une unique solution sur l'intervalle [a;b], on démontre que :

1)

Page 4/6 Année 2025-2026

Les conditions 1 et 2 nous assurent que des solutions existent. Avec la condition 3 en plus, nous savons que la solution est unique.

Enoncé:

3)

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3 - x^2 - 1$.

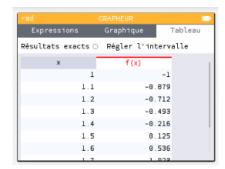
- **1)** Démontrer que l'équation f(x) = 0 admet une unique solution α sur l'intervalle [1;2].
- 2) À l'aide de la calculatrice, donner un encadrement au centième de la solution α .

Réponse :

1) •

2) A l'aide de la calculatrice, il est possible d'effectuer des « *balayages successifs* » en augmentant la précision.

La solution est comprise entre 1,4 et 1,5. En effet : $f(1,4) \approx -0,216 < 0$ $f(1,5) \approx 0,125 > 0$



Année 2025-2026 Page 5/6

La solution est comprise entre 1,46 et 1,47. En effet : $f(1,46) \approx -0.019 < 0$

 $f(1,47) \approx 0.0156 > 0$

On en déduit que : 1,46 $< \alpha <$ 1,47.

rad	od GRAPHEUR □			
Expressions		Graphique	Tableau	
Résultats	$exacts \; \bigcirc$	Régler l'int	ervalle	
×		f(x)		
	1.42	-0.153	112	
	1.43	-0.120	693	
	1.44	-0.087	616	
	1.45	-0.053	875	
	1.46	-0.019	464	
	1.47	0.015	623	
	1.48	0.051	392	
	1.49	0.087	849	

Enoncé:

On considère la fonction f définie sur \mathbb{R} par $f(x)=x^3-4x^2+6$. Démontrer que l'équation f(x)=2 admet au moins une solution sur [-1;4]. **Réponse :**

•	
•	

Page 6/6 Année 2025-2026