### Chapitre 3

# Équations du second degré

# I. Résolution d'une équation du second degré

### 1) Résoudre une équation à l'aide du discriminant

#### Définition

Une **équation du second degré** est une équation de la forme  $ax^2 + bx + c = 0$  où a, b et c sont des réels avec  $a \neq 0$ .

Une solution de cette équation s'appelle une racine du trinôme  $ax^2 + bx + c$ .

**Exemple**: L'équation  $3x^2 - 6x - 2 = 0$  est une équation du second degré.

Remarque Résoudre l'équation  $3x^2 - 6x - 2 = 0$  ou trouver les racines du trinôme  $3x^2 - 6x - 2$  sont deux énoncés identiques.

#### □ Définition

On appelle discriminant du trinôme  $ax^2 + bx + c$ , le nombre réel, noté  $\Delta$ , égal à  $b^2 - 4ac$ .

$$\Delta = b^2 - 4ac$$

### Propriété

Soit  $\Delta$  le discriminant du trinôme  $ax^2 + bx + c$ .

- Si  $\Delta < 0$ : L'équation  $ax^2 + bx + c = 0$  n'a pas de solution réelle.
- Si  $\Delta = 0$ : L'équation  $ax^2 + bx + c = 0$  a une unique solution :  $x_0 = \frac{-b}{2a}$ .
- Si  $\Delta > 0$ : L'équation  $ax^2 + bx + c = 0$  a deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et  $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$ 

### 

**Enoncé :** Résoudre les équations suivantes :

1) 
$$2x^2 - x - 6 = 0$$

2) 
$$2x^2 - 3x + \frac{9}{8} = 0$$
.

3) 
$$x^2 + 3x + 10 = 0$$

Réponse :

Année 2025-2026 Page 1/??

1) Calculons le discriminant de l'équation  $2x^2 - x - 6 = 0$ : a = 2, b = -1 et c = -6 donc  $\Delta = b^2 - 4ac = (-1)^2 - 4 \times 2 \times (-6) = 49$ . Comme  $\Delta > 0$ , l'équation possède deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-1) - \sqrt{49}}{2 \times 2} = -\frac{3}{2}$$
$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-(-1) + \sqrt{49}}{2 \times 2} = 2$$

2) Calculons le discriminant de l'équation  $2x^2 - 3x + \frac{9}{8} = 0$ :

$$a = 2$$
,  $b = -3$  et  $c = \frac{9}{8}$  donc  $\Delta = b^2 - 4ac = (-3)^2 - 4 \times 2 \times \frac{9}{8} = 0$ .

Comme  $\Delta = 0$ , l'équation possède une solution unique :

$$x_0 = -\frac{b}{2a} = -\frac{-3}{2 \times 2} = \frac{3}{4}$$

3) Calculons le discriminant de l'équation  $x^2 + 3x + 10 = 0$ : a = 1, b = 3 et c = 10 donc  $\Delta = b^2 - 4ac = 3^2 - 4 \times 1 \times 10 = -31$ .

Comme  $\Delta < 0$ , l'équation ne possède pas de solution réelle.

### 2) Résoudre une équation à l'aide de la somme et du produit des racines

# Propriété

La somme S et le produit P des racines d'un polynôme du second degré de la forme  $ax^2 + bx + c$  sont donnés par :  $S = -\frac{b}{a}$  et  $P = \frac{c}{a}$ .

### 🗹 Démonstration

- $S = x_1 + x_2 = \frac{-b \sqrt{\Delta}}{2a} + \frac{-b + \sqrt{\Delta}}{2a} = \frac{-b \sqrt{\Delta} b + \sqrt{\Delta}}{2a} = \frac{-2b}{2a} = -\frac{b}{a}$
- $P = x_1 \times x_2 = \frac{-b \sqrt{\Delta}}{2a} \times \frac{-b + \sqrt{\Delta}}{2a} = \frac{(-b \sqrt{\Delta}) \times (-b + \sqrt{\Delta})}{4a^2} = \frac{b^2 \Delta}{4a^2} = \frac{b^2 \Delta}{4a^2}$

## **≅** Méthode - utiliser somme et produit pour trouver les 2 racines

#### **Enoncé:**

Trouver les 2 racines du polynôme suivant :  $2x^2 + 3x - 5$ 

### Réponse :

On a une solution évidente ( $x_1 = 1$ ). Or la somme des 2 racines vaut  $S = -\frac{b}{a} = -\frac{3}{2}$ . Donc :

$$x_1 + x_2 = -\frac{3}{2} \iff 1 + x_2 = -\frac{3}{2} \iff x_2 = -\frac{3}{2} - 1 = -\frac{5}{2}$$

Remarque Quant on a des équations du second degré avec a=1 (donc du type  $x^2+\ldots=0$ ) on retrouve directement la somme et le produit car l'équation s'écrit  $x^2-Sx+P=0$ .

Page 2/?? Année 2025-2026

#### II. Factorisation d'un trinôme

### Propriété

Soit f une fonction polynôme de degré 2 définie sur  $\mathbb{R}$  par  $f(x) = ax^2 + bx + c$ .

- Si  $\Delta = 0$ : Pour tout réel x, on a :  $f(x) = a(x x_0)^2$  avec  $x_0$  racine unique du trinôme.
- Si  $\Delta > 0$ : Pour tout réel x, on a :  $f(x) = a(x x_1)(x x_2)$  avec  $x_1$  et  $x_2$  les 2 racines du trinôme..
- **Proof** Remarque Si  $\Delta < 0$ , il n'existe pas de forme factorisée de f.

### **≔** Méthode - Factoriser un trinôme )

**Enoncé**: Factoriser les trinômes suivants

1) 
$$4x^2 + 19x - 5$$

2) 
$$9x^2 - 6x + 1$$
.

### Réponse:

1) On cherche les racines du trinôme  $4x^2 + 19x - 5$ :

Calcul du discriminant : 
$$\Delta = 19^2 - 4 \times 4 \times (-5) = 441$$
  
Les racines sont :  $x_1 = \frac{-19 - \sqrt{441}}{2 \times 4} = -5$  et  $x_2 = \frac{-19 + \sqrt{441}}{2 \times 4} = \frac{1}{4}$ 

$$4x^{2} + 19x - 5 = 4(x - (-5))\left(x - \frac{1}{4}\right) = (x + 5)(4x - 1)$$

2) On cherche les racines du trinôme  $9x^2 - 6x + 1$ :

Calcul du discriminant :  $\Delta = (-6)^2 4 \times 9 \times 1 = 0$ 

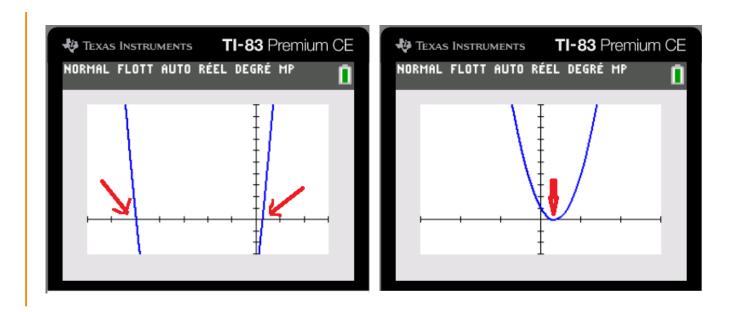
La racine (double) est : 
$$x_0 = -\frac{-6}{2 \times 9} = \frac{1}{3}$$

On a donc:

$$9x^2 - 6x + 1 = 9\left(x - \frac{1}{3}\right)^2$$

On peut vérifier le résultat à l'aide de la calculatrice. En traçant la courbe représentative de la fonction, on peut vérifier les racines à l'aide des points d'intersection de la courbe et de l'axe des abscisses. Ainsi en traçant les courbes précédentes, nous obtenons les courbes suivantes:

Année 2025-2026 Page 3/??



# III. signe d'un trinôme



Pour une fonction polynôme de degré 2 définie par  $f(x) = ax^2 + bx + c$ :

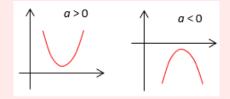
- si a > 0, sa représentation graphique est une parabole tournée vers le haut.
- si a < 0, sa représentation graphique est une parabole tournée vers le bas

### Propriété

Soit f une fonction polynôme de degré 2 définie sur  $\mathbb{R}$  par  $f(x) = ax^2 + bx + c$ :

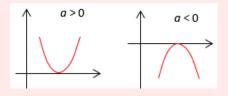
•  $\operatorname{si} \Delta < 0$ :

| x    | $-\infty$ | +∞ |
|------|-----------|----|
| f(x) | signe de  | а  |

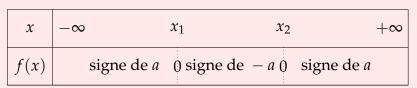


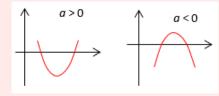
•  $\operatorname{si} \Delta = 0$ :

| x    | $-\infty$ |                   | $x_0$ |                   | +∞ |
|------|-----------|-------------------|-------|-------------------|----|
| f(x) |           | signe de <i>a</i> | 0     | signe de <i>a</i> |    |



•  $\operatorname{si} \Delta > 0$ :





Page 4/?? Année 2025-2026

### Méthode - Résoudre une inéquation du second degré

**Enoncé**: Résoudre l'inéquation :  $x^2 + 3x - 5 < -x + 2$ 

#### Réponse:

On commence par rassembler tous les termes dans le membre de gauche afin de pouvoir étudier les signes des trinômes.

$$x^2 + 3x - 5 < -x + 2$$
 équivaut à  $x^2 + 4x - 7 < 0$ .

Le discriminant de  $x^2 + 4x - 7$  est  $\Delta = 42 - 4 \times 1 \times (-7) = 44$  et ses racines sont :

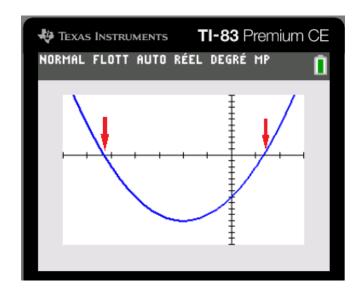
$$x_1 = \frac{-4 - \sqrt{44}}{2 \times 1} = -2 - \sqrt{11} \text{ et } x_2 = \frac{-4 + \sqrt{44}}{2 \times 1} = -2 + \sqrt{11}$$

On obtient le tableau de signes :

| x    | $-\infty$ |   | $-2-\sqrt{11}$ |   | $-2+\sqrt{11}$ |   | +∞ |
|------|-----------|---|----------------|---|----------------|---|----|
| f(x) |           | + | 0              | _ | 0              | + |    |

L'ensemble des solutions de l'inéquation  $x^2 + 3x - 5 < -x + 2$  est donc  $\left[-2 - \sqrt{11}; -2 + \sqrt{11}\right]$ .

Remarque Comme précédement, on peut vérifier le résultat à l'aide de la calculatrice.



Année 2025-2026 Page 5/??