Chapitre 3

Équations du second degré

I. Résolution d'une équation du second degré

1) Résoudre une équation à l'aide du discriminant

bx + c = 0 où a, b	est une équation de la forme $ax^2 + c$ et c sont des réels avec $a \neq 0$. Tette équation s'appelle une
> Exemple :	L'équation $3x^2 - 6x - 2 = 0$ est une équation du second degré.

Remarque Résoudre l'équation $3x^2 - 6x - 2 = 0$ ou trouver les racines du trinôme $3x^2 - 6x - 2$ sont deux énoncés identiques.

© Définition
On appelle
$\Delta = \ldots \ldots$

☼ Propriété				
Soit Δ le discriminant du trinôme $ax^2 + bx + c$.				
•				
•				
•				

Année 2025-2026 Page 1/4

Enoncé: Résoudre les équations suivantes:

- 1) $2x^2 x 6 = 0$
- 2) $2x^2 3x + \frac{9}{8} = 0$.
- 3) $x^2 + 3x + 10 = 0$

2) Résoudre une équation à l'aide de la somme et du produit des racines

Propriété

La somme S et le produit P des racines d'un polynôme du second degré de la forme $ax^2 + bx + c$ sont donnés par : S = et P = .

Démonstration

Méthode - utiliser somme et produit pour trouver les 2 racines

Enoncé:

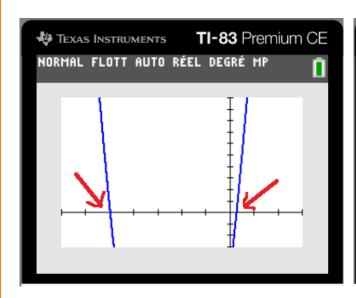
Trouver les 2 racines du polynôme suivant : $2x^2 + 3x - 5$

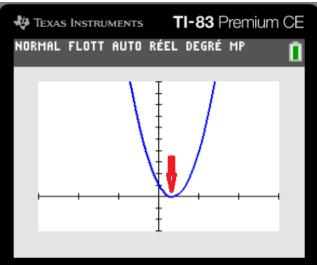
Remarque Quant on a des équations du second degré avec a = 1 (donc du type $x^2 + \ldots = 0$) on retrouve directement la somme et le produit car l'équation s'écrit $x^2 - Sx + P = 0$.

II. Factorisation d'un trinôme

Soit f une fonction polynôme de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$.

Remarque Si $\Delta < 0$, il n'existe pas de forme factorisée de f.


Page 2/4 Année 2025-2026


(≆ Méthode - Factoriser un trinôme

Enoncé: Factoriser les trinômes suivants

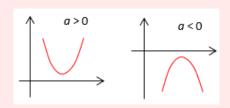
- 1) $4x^2 + 19x 5$
- 2) $9x^2 6x + 1$.

Remarque On peut vérifier le résultat à l'aide de la calculatrice. En traçant la courbe représentative de la fonction, on peut vérifier les racines à l'aide des points d'intersection de la courbe et de l'axe des abscisses. Ainsi en traçant les courbes précédentes, nous obtenons les courbes suivantes :

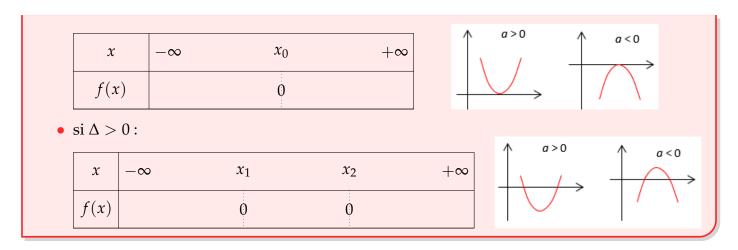
III. signe d'un trinôme

Pour une fonction polynôme de degré 2 définie par $f(x) = ax^2 + bx + c$:

- si a > 0, sa représentation graphique est une parabole tournée vers le haut.
- si a < 0, sa représentation graphique est une parabole tournée vers le bas

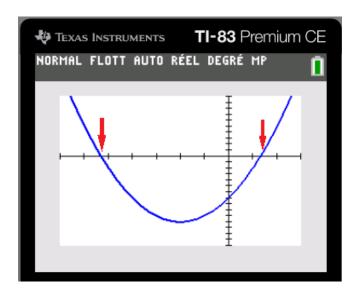

Propriété

Soit f une fonction polynôme de degré 2 définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$:


• $\operatorname{si} \Delta < 0$:

x	$-\infty$	+∞
f(x)		

• $\operatorname{si} \Delta = 0$:


Année 2025-2026 Page 3/4

₹≣ Méthode - Résoudre une inéquation du second degré

Enoncé: Résoudre l'inéquation :
$$x^2 + 3x - 5 < -x + 2$$

Comme précédement, on peut vérifier le résultat à l'aide de la calculatrice.

Page 4/4 Année 2025-2026