Chapitre 1

Automatismes - Exercices

Exercice 1 (Sous forme décimale ou sous forme de pourcentage)

- 1) Écrire sous forme décimale :
- **b)** 0,75%; **c)** 0,05%; **d)** 50%;

- e) 200%.
- 2) Écrire sous forme de pourcentage :
 - a) 0,40;

a) 7,5%;

- **b)** 0,08;
- c) 0,015;
- **d)** 0,0075; **e)** 0,001.

Exercice 2 (Calculer un pourcentage) Calculer:

- 1) 25% de 300:
 - 2) 33% de 700;
 - 3) 0,5% de 2496000;
 - 4) 300% de 12.

Exercice 3 (Calculer un pourcentage)

Calculer:

- **1)** 10% de 5000;
- 3) 200% de 2;
- 2) 20% de 6,50;
- 4) 0,5% de 50000;

Exercice 4 (Un rabais sur l'assurance automobile)

Pour un certain modèle de voiture, un assureur propose 30% d'économie moyenne par rapport à l'assureur précédent, soit 150 € d'économie. Quel tarif cet assureur attribue-t-il, pour ce modèle de voiture, à l'assureur précédent?

Exercice 5 — Salle informatique

Deux salles informatiques du lycée sont équipées de la façon suivante :

- la salle 1 avec 25 ordinateurs, dont 6 neufs;
- la salle 2 avec 20 ordinateurs, dont 5 neufs.
- « Je préfère aller en salle 1, c'est là qu'il y a le plus d'ordinateurs neufs » dit une élève.
- « La proportion d'ordinateurs neufs est plus grande dans la salle 2 » lui répond son professeur. Qui a raison?

Exercice 6 (Calculer une proportion ou un effectif)

- 1) Calculer p lorsque $n_S = 150$ et $n_E = 600$. Écrire le résultat sous la forme d'un pourcentage.
- 2) Calculer p lorsque $n_S = 12$ et $n_E = 2400$. Écrire le résultat sous la forme d'un pourcentage.
- 3) Calculer n_S lorsque p = 0.09 et $n_E = 250000$.
- **4)** Calculer n_E lorsque p = 0.30 et $n_S = 3000$.
- **5)** Calculer n_E lorsque p = 20% et $n_S = 6000$.
- 6) Sachant que 30% d'une somme S vaut 600 €, calculer S.

Exercice 7 (Après le bac)

Dans un lycée technologique, 200 élèves se sont présentés au baccalauréat et 90% des élèves ont été reçus.

- 1) Calculer le nombre d'élèves reçus.
- 2) Parmi les élèves reçus 20% se sont inscrits en IUT, cinq sont partis dans la vie active, les autres ont été admis en sections de technicien supérieur.
 - a) Calculer le nombre d'élèves inscrits dans un IUT.
 - b) Calculer le nombre d'élèves inscrits dans une section de technicien supérieur.

Exercice 9 — Pourcentage et coef multiplicateur

Exercice 8 – Taux d'évolution entre Q_1 et Q_2

- 1) Calculer l'un des trois nombres Q_1, Q_2 ou t, connaissant les deux autres.
- 2) Indiquer s'il s'agit d'une hausse ou d'une baisse et donner le taux d'évolution sous forme de pourcentage.
 - a) $Q_1 = 3$; $Q_2 = 4$.
 - **b)** $Q_1 = 2, 5; Q_2 = 2.$
 - c) $Q_1 = 3$; t = -0, 10.
 - **d)** $Q_2 = 1, 2; t = 0, 2.$

- 1) Dans chacun des cas suivants, donner le coefficient multiplicateur correspondant à une hausse ou à une baisse de pourcentage donné.
 - a) une hausse de 30%;
- d) une baisse de 91%;
- b) une baisse de 30%;
- c) une hausse de 45%;
- e) une hausse de 300%.
- 2) Dans chacun des cas suivants, le coefficient multiplicateur c est donné. Indiquer sil s'agit d'une hausse ou d'une baisse et en donner le pourcentage.
 - a) c = 1,03;

d) c = 0.70;

b) c = 1,025;

e) c = 2,5;

c) c = 0, 2;

f) c = 0.995.

Année 2025-2026

Exercice 10

Recopier et compléter les phrases suivantes.

- 1) Augmenter de 40%, c'est multiplier par...
- 2) Diminuer de 50%, c'est multiplier par...
- 3) Multiplier par 3 c'est augmenter de ...%.
- 4) Multiplier par 0,25 c'est diminuer de ...%.

Exercice 11

- 1) Une personne paie, pour un groupe, une note de restaurant qui s'élève à 207 €, avec le service compris de 15%. Quel est le prix des repas sans le service?
- 2) Un commerçant calcule ses prix de vente en prenant un bénéfice de 30% sur ses prix d'achat. Quel est le prix d'achat d'un article qu'il a vendu 113, 10 €.
- 3) Le prix d'un article soldé est de 41,40 €. L'étiquette indique « −40% ». Calculer le prix de l'article avant les soldes.

Exercice 12

Dans chacun des cas suivants, calculer le coefficient multiplicateur global. Indiquer s'il s'agit d'une baisse ou d'une hausse et en donner l'e taux d'évolution sous forme de pourcentage.

- 1) une hausse de 10%, puis une baisse de 20%;
- 2) une hausse de 20%, puis une baisse de 10%;
- 3) une hausse de 10%, puis une hausse de 10%;
- 4) une baisse de 10%, puis une baisse de 10%;
- 5) une baisse de 50%, puis une hausse de 200%.

Exercice 13

- 1) Un prix augmente de 40%, puis baisse de 40%. Le prix est-il revenu à sa valeur initiale?
- 2) Deux hausses successives de 50% sont-elles équivalentes à une hausse de 100%?
- 3) Une baisse de 10% suivie d'une baisse de 20% a-telle le même effet qu'une baisse de 20% suivie d'une baisse de 10%?

Exercice 14

Les questions suivantes sont indépendantes.

- 1) Un article qui valait 92 a subi deux augmentations successives, la première de 5%, la seconde de 15%. Quelle est l'augmentation totale, en pourcentage et en valeur, subie par cet article?
- **2)** Après deux augmentations successives, la première de 10%, la seconde de 20%, un matériel coûte 792. Combien coûtait-il avant les deux augmentations?
- 3) Le prix d'un produit industriel a d'abord augmenté de 8,5% puis diminué de 3%. Calculer le taux d'évolution global de ce prix sous forme de pourcentage. Arrondir à 0,01%.
- 4) Le prix d'un produit alimentaire a subi trois hausses mensuelles successives de 9,5%. Calculer le taux d'évolution global sous forme de pourcentage. Arrondir à 0,1%.
- 5) La valeur de revente d'un équipement informatique pour les entreprises a subi quatre baisses annuelles successives de 25%. Au bout de quatre ans la valeur de revente de l'équipement :
 - a) est nulle;
 - b) a baissé d'environ 60%;

- c) a baissé d'environ 68%;
- d) a baissé d'environ 75%.

Exercice 15 — **Le prix d'une matière première** Une matière première coûtait 140 € la tonne au début du mois d'août dernier.

- 1) Calculer le prix P_1 à la tonne de cette matière première après une hausse de 7%.
- a) Calculer le coefficient multiplicateur c_1 de la baisse qu'il faudrait appliquer au prix de la tonne de cette matière première pour qu'il revienne à 140 €. Arrondir à 10^{-4} .
 - **b)** En déduire le taux d'évolution t_1 de cette baisse sous forme de pourcentage.

Exercice 16 – Évolutions successives et évolution réciproque

- 1) Pendant une période de promotion, le prix d'un outillage a subi deux baisses successives de 12%. Démontrer que le taux d'évolution de la hausse, qu'il faut appliquer au prix de l'outillage pour revenir au prix initial avant la période de promotion, est, en arrondissant à 0,01%, de 29,13%.
- 2) Le prix d'un article a subi deux hausses successives de 12%. Déterminer le taux d'évolution de la baisse qu'il faut appliquer au prix de l'article pour revenir au prix initial.

Page 2/4 Année 2025-2026

Exercice 17 — Somme de fractions

1) Trouver une fraction irréductible égale à $\frac{4}{7} + \frac{3}{8}$.

2) Trouver une fraction irréductible égale à $3 - \frac{2}{3}$.

3) Vérifier que : $\frac{1}{3}x + \frac{2}{5} = \frac{5x+6}{15}$.

4) Réduire : $A = \frac{4}{3}x - 2x$.

5) Reproduire et compléter l'égalité suivante : $0.72 = 1 - \frac{\dots}{100}$.

Exercice 18 — Produit de fractions

1) Calculer : $p = \frac{5}{12} \times \frac{16}{15}$. Simplifier le résultat obtenu.

2) Trouver une fraction irréductible égale à $\frac{15}{4} \times \frac{8}{25}$.

3) Calculer : $p = 90 \times \frac{30}{100}$.

4) Calculer : $p = 40 \times \left(1 + \frac{10}{100}\right)$.

5) Développer : $p = \frac{1}{2} \left(\frac{3}{4} x + \frac{1}{3} \right)$.

Exercice 19 — notation scientifique

Écrire en notation scientifique les nombres figurant dans chacune des phrases suivantes.

1) Le big-bang marquant l'origine de l'univers a eu lieu il y a environ 15 milliards d'années.

2) La vitesse de la lumière est d'environ 299792000 m \cdot s⁻¹.

3) L'aire de la Terre est d'environ 510100000 km².

4) L'étoile la plus proche du soleil est à environ 3750000000000 km.

Écrire sous forme décimale chacun des nombres suivants.

1) $3,42 \times 10^3$;

3) 17.5×10^{-2} ;

2) 0.501×10^4 ;

4) 0.02×10^{-3} .

Écrire sous forme décimale, puis sous forme scientifique, chacun des nombres suivants.

1) $A = 3 \times 10^3 + 2 \times 10^{-1} + 5 \times 10^{-2}$;

2) B = $\frac{3 \times 10^2 \times 4 \times 10^3}{2 \times 10^{-3}}$.

Exercice 20 – équation du premier degré

Résoudre une équation du premier degré ou une équation se ramenant à des équations du premier degré * Résoudre dans $\mathbb R$ chacune des équations suivantes.

1) 0,2x=7;

4) x = 0, 2x - 1, 6;

6) $\frac{3}{4}x = \frac{1}{2}x + \frac{1}{3}$;

2) 12x = 0;

7) 4(x-6)(x-1)=0;

3) 4x = 6x + 1;

5) $2x + 5 = x - 2 + \frac{1}{2}x$;

8) -2(3x+3)(-x+5)=0.

Exercice 21 - Résoudre une inéquation du premier degré

Résoudre dans R chacune des inéquations suivantes.

1) $-3x \geqslant 1$;

3) $\frac{3}{4}x + \frac{1}{2} \geqslant 0$;

5) $6x - 3 \leqslant -2x + 7$;

2) $-4x + 7 \le 0$;

4) $-\frac{1}{3}x - \frac{2}{5} \leqslant 0$;

6) $-4x+9 \geqslant \frac{1}{3}x+7$.

Exercice 22 — Quotient de fractions

1) Calculer : $q = \frac{3}{5} \div \frac{4}{7}$.

2) Calculer : $q = 3 \div \frac{4}{5}$

3) Calculer : $q = \frac{2}{3} \div \frac{4}{9}$. Simplifier le résultat obtenu.

4) Calculer : $q = \frac{2 - \frac{3}{5}}{4 - \frac{7}{5}}$. Mettre le résultat sous forme de fraction irréductible.

5) Reproduire et compléter l'égalité suivante : $\frac{2}{7} \times ... = \frac{3}{4}$.

Exercice 23 — Compléter des égalités

Reproduire et compléter chacune des égalités suivantes.

1)
$$10 \cdots \times 10^4 = 10^{-2}$$
;

3)
$$10^{-4} \times 10 \dots = 10^{-3}$$
;

5)
$$\frac{10^{-4}}{10^{\cdots}} = 10^4$$
;

2)
$$10 \cdots \times 10^{-3} = 10^5$$
;

4)
$$\frac{10^2}{10\cdots}=10^{-2}$$
;

6)
$$3x \times ... = 12x^3$$
.

Exercice 24 – ordre de grandeur

Dans chaque cas, donner un ordre de grandeur du résultat.

1)
$$S = 4,98 + 8,01 + 9,96 + 26,02$$
;

2)
$$S = 7.91 + 9.04 + 10.94 + 15.07$$
.

Exercice 25 – équation de la forme $x^2 = a$

Résoudre dans R les équations suivantes.

1)
$$x^2 = 4$$
;

2)
$$x^2 = 5$$
;

3)
$$2x^2 + 3 = 0$$
; 4) $x^2 - 7 = 0$.

4)
$$x^2 - 7 = 0$$

Exercice 26 – Développer, réduire et ordonner

Dans ce qui suit, *P* est une fonction polynôme définie par tout nombre réel *x*.

Développer et réduire chacune des expressions suivantes, puis ordonner les polynômes obtenus dans l'ordre des puissances décroissantes de *x* ou de *t* :

1)
$$P(x) = (x+1)(x+1) - (x+2)x$$
;

2)
$$P(t) = (2t-3)(2t+3) - (2t-3)^2$$
;

3)
$$P(x) = (-x-1)^2 + (x+1)^2$$
;

4)
$$P(x) = x(3x+2)^2 - (3x-2)^2$$
;

5)
$$P(t) = \left(t - \frac{1}{2}\right)^2 - \left(t - \frac{1}{2}\right)\left(t + \frac{1}{2}\right);$$

6)
$$P(t) = \frac{t-5}{3} + \frac{2-t}{6} - t^2$$
.

Exercice 27 — Factoriser, puis résoudre une équation.

Mettre P(x) sous forme d'un produit de facteurs du premier degré, puis résoudre l'équation P(x) = 0.

1)
$$P(x) = x^2 - 4x$$
.

2)
$$P(x) = (x-3)(x-2) - (2x-1)(x-3)$$
.

3)
$$P(x) = 9x^2 - 6x + 1$$
.

4)
$$P(x) = x^2 - 100$$
.

5)
$$P(x) = x^2 - 5$$
.

6)
$$P(t) = (7t - 3)^2 - 25$$

7)
$$P(x) = (2x+1)^2 - (-x+3)^2$$
.

8)
$$P(x) = (2x+3)^2 + (x-5)(2x+3)$$
.

9)
$$P(x) = (2x-7)(-5x+9) + 4x^2 - 49$$
.

Exercice 28 — inéquations et tableau de signes

Résoudre deux inéquations pour déterminer le signe d'une expression factorisée du second degré *

- 1. Résoudre dans \mathbb{R} l'inéquation $4x + 1 \ge 0$.
- 2. Résoudre dans \mathbb{R} l'inéquation -2x + 3 > 0.
- 3. Compléter, après l'avoir reproduit, le tableau de signes suivant qui donne le signe de(4x + 1)(-2x + 3).

x	$-\infty$	$-\frac{1}{4}$		$\frac{3}{2}$		$+\infty$
Signe de $4x + 1$?	0	?		?	
Signe de $-2x + 3$?		?	0	?	
Signe de $(4x + 1)(-2x + 3)$?	0	?	0	?	