Chapitre 02 - Trigonométrie Correction des exercices obligatoires

Exercice 1 - enroulement autour du cercle trigo

En utilisant la figure ci-dessous, donner les points du cercle qui correspondent aux angles suivants. On détaillera la décomposition du nombre en donnant la mesure principale de l'angle.

1)
$$\frac{5\pi}{6}$$
 $\frac{5\pi}{6} \in]-\pi;\pi]$. $\frac{5\pi}{6}$ est donc la mesure principale. Il s'agit du point F.

2)
$$\frac{15\pi}{4}$$

$$\frac{15\pi}{4} = \frac{16\pi}{4} - \frac{\pi}{4} \cdot -\frac{\pi}{4} \text{ est la mesure principale. Il s'agit du point M.}$$

3)
$$-\frac{132\pi}{3}$$

$$3 \times 2 = 6 \qquad -\frac{132\pi}{3} = \frac{-6 \times 22\pi}{3} + 0\pi. \text{ 0 est la mesure principale. Il s'agit du point I.}$$

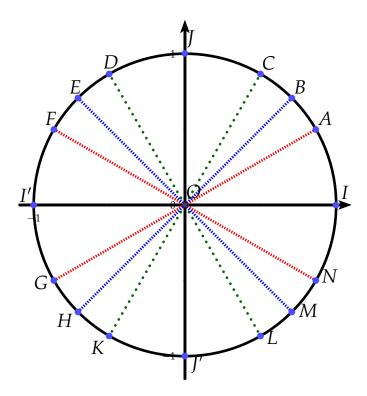
4)
$$\frac{35\pi}{2}$$

$$2 \times 2 = 4$$
 $\frac{35\pi}{2} = \frac{36\pi}{2} - \frac{\pi}{4}$. $\frac{\pi}{4}$ est la mesure principale. Il s'agit du point B.

$$6 \times 2 = 12$$
point F.
$$-\frac{55\pi}{6} = \frac{-5 \times 12\pi}{6} + \frac{5\pi}{6} = \frac{-60\pi}{6} + \frac{5\pi}{6} \cdot \frac{5\pi}{6}$$
 est la mesure principale. Il s'agit du

$$2 \times 4 = 8 \qquad -\frac{35\pi}{4} = -\frac{8 \times 4\pi}{4} - \frac{3\pi}{4} = \frac{-32\pi}{4} - \frac{3\pi}{4} = \frac{3\pi}{4} - \frac{3\pi}{4} \text{ est la mesure principale. Il s'agit du point H.}$$

7)
$$\frac{26\pi}{3}$$


$$3 \times 2 = 6$$

$$\frac{26\pi}{3} = \frac{6 \times 4\pi}{3} + \frac{2\pi}{3} = \frac{24\pi}{3} + \frac{2\pi}{3} \cdot \frac{2\pi}{3}$$
 est la mesure principale. Il s'agit du point D.

8)
$$-\frac{1883\pi}{2}$$

$$2 \times 2 = 4 \qquad -\frac{1883\pi}{2} = \frac{-471 \times 4\pi}{2} + \frac{\pi}{2} = \frac{-1884\pi}{2} + \frac{\pi}{2}. \frac{\pi}{2} \text{ est la mesure principale. Il s'agit du point J.}$$

Année 2025-2026 Page 1/7

Exercice 2

En utilisant la figure de l'exercice 1, donner trois réels (dont au moins un positif et un négatif) associés à chacun des points suivants lors de l'enroulement de la droite numérique sur le cercle trigonométrique : C; E; K et J.

•
$$C: \frac{\pi}{3}; \frac{\pi}{3} + 2\pi = \frac{7\pi}{3}; \frac{\pi}{3} - 2\pi = \frac{-5\pi}{3}$$

• E:
$$\frac{3\pi}{4}$$
; $\frac{3\pi}{4} + 2\pi = \frac{11\pi}{4}$; $\frac{3\pi}{4} - 2\pi = \frac{-5\pi}{4}$

• K:
$$\frac{-2\pi}{3}$$
; $\frac{-2\pi}{3} + 2\pi = \frac{4\pi}{3}$; $\frac{-2\pi}{3} - 2\pi = \frac{-8\pi}{3}$

•
$$J: \frac{\pi}{2}; \frac{\pi}{2} + 2\pi = \frac{5\pi}{2}; \frac{\pi}{2} - 2\pi = \frac{-3\pi}{2}$$

Exercice 3 - même point image

Pour chacun des nombres suivants, déterminer deux autres réels ayant le même point image lors de l'enroulement de la droite numérique

1)
$$\frac{3\pi}{4}$$
 $\frac{3\pi}{4}$; $\frac{3\pi}{4} + 2\pi = \frac{11\pi}{4}$; $\frac{3\pi}{4} - 2\pi = \frac{-5\pi}{4}$

2)
$$\frac{5\pi}{7}$$
 $\left(\frac{5\pi}{7}; \frac{5\pi}{7} + 2\pi = \frac{19\pi}{7}; \frac{5\pi}{7} - 2\pi = \frac{-9\pi}{7}\right)$

3)
$$-\frac{2\pi}{5}$$

$$-\frac{2\pi}{5}; \frac{-2\pi}{5} + 2\pi = \frac{8\pi}{5}; \frac{-2\pi}{5}; -2\pi = \frac{-12\pi}{5}$$

4)
$$\frac{7\pi}{9}$$

Année 2025-2026 Page 2/7

$$\left\{\frac{7\pi}{9}; \frac{7\pi}{9} + 2\pi = \frac{25\pi}{9}; \frac{7\pi}{9} - 2\pi = -\frac{11\pi}{9}\right\}$$

5)
$$\frac{4\pi}{3}$$

$$\frac{4\pi}{3}; \frac{4\pi}{3} + 2\pi = \frac{10\pi}{3}; \frac{4\pi}{3} - 2\pi = \frac{-2\pi}{3}$$

Exercice 4 - convertir en degrés

Pour chacun des angles suivants, convertir l'angle en degré. On arrondira si nécessaire à 1 chiffre après la virgule

1)
$$\frac{3\pi}{5}$$
 rac

2)
$$\frac{5\pi}{7}$$
 rad

3)
$$\frac{4\pi}{3}$$
 rac

4)
$$\frac{3\pi}{2}$$
 rac

1)
$$\frac{3\pi}{5}$$
 rad 2) $\frac{5\pi}{7}$ rad 3) $\frac{4\pi}{3}$ rad 4) $\frac{3\pi}{2}$ rad 5) $\frac{7\pi}{4}$ rad 6) $\frac{5\pi}{6}$ rad

6)
$$\frac{5\pi}{6}$$
 rac

1										
	rad $\frac{3\pi}{5}$		$\frac{5\pi}{7}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	$\frac{5\pi}{6}$			
	deg	$\frac{3\pi}{5} \times \frac{180}{\pi} = 68$	$\frac{5\pi}{7} \times \frac{180}{\pi} = 128$	240	270	315	150			

Exercice 5 - convertir en radians

Pour chacun des angles suivants, convertir l'angle en radian. On donnera la valeur exacte.

deg	35	260	70	195	225	54
rad	$35 \times \frac{\pi}{180} = \frac{7\pi}{36}$	$\frac{13\pi}{9}$	$\frac{7\pi}{18}$	$\frac{13\pi}{12}$	$\frac{5\pi}{4}$	$\frac{3\pi}{10}$

Exercice 6

Dans chacune des listes suivantes, il y a un intrus. Le trouver en justifiant.

1)
$$\frac{3\pi}{2}$$
; $\frac{9\pi}{2}$; $\frac{-\pi}{2}$; $\frac{-5\pi}{2}$.

Pour trouver l'intrus, on cherche la mesure principale de l'angle.
$$\frac{3\pi}{2} \Rightarrow \frac{-\pi}{2}$$
; $\frac{9\pi}{2} \Rightarrow \frac{\pi}{2}$; $\frac{-\pi}{2} \Rightarrow \frac{-\pi}{2}$; $\frac{-5\pi}{2} \Rightarrow \frac{-\pi}{2}$. L'intrus est $\frac{9\pi}{2}$

2)
$$\frac{\pi}{3}$$
; $\frac{14\pi}{3}$; $\frac{-8\pi}{6}$; $\frac{-10\pi}{3}$

2)
$$\frac{\pi}{3}$$
; $\frac{14\pi}{3}$; $\frac{-8\pi}{6}$; $\frac{-10\pi}{3}$.
 $\frac{\pi}{3} \Rightarrow \frac{\pi}{3}$; $\frac{14\pi}{3} \Rightarrow \frac{2\pi}{3}$; $\frac{-8\pi}{6} \Rightarrow \frac{2\pi}{3}$; $\frac{-10\pi}{3} \Rightarrow \frac{2\pi}{3}$. L'intrus est $\frac{\pi}{3}$

3)
$$\frac{7\pi}{4}$$
; $\frac{-\pi}{4}$; $\frac{-9\pi}{4}$; $\frac{-19\pi}{4}$

$$\boxed{\frac{7\pi}{4} \Rightarrow \frac{-\pi}{4} \; ; \; \frac{-\pi}{4} \Rightarrow \frac{-\pi}{4} \; ; \; \frac{-9\pi}{4} \Rightarrow \frac{-\pi}{4} \; ; \; \frac{-19\pi}{4} \Rightarrow \frac{-3\pi}{4}. \text{ L'intrus est } \frac{-19\pi}{4}}$$

4)
$$\pi; -\pi; \pi\sqrt{9}; 0.$$

$$\pi \Rightarrow \pi$$
 ; $-\pi \Rightarrow \pi$; $\pi\sqrt{9} = 3\pi \Rightarrow \pi$; $0 \Rightarrow 0$. L'intrus est 0

Année 2025-2026 Page 3/7

Exercice 7 - cosinus et sinus

En utilisant le cercle trigonométrique de l'exercice 1, recopier et compléter le tableau suivant :

x	$\frac{7\pi}{4}$	$\frac{7\pi}{3}$	$-\frac{13\pi}{6}$	$\frac{13\pi}{2}$	$-\frac{15\pi}{4}$	$-\frac{11\pi}{3}$	$\frac{25\pi}{6}$	$-\frac{9\pi}{2}$
Point image								
$\cos(x)$								
$\sin(x)$								

x	$\frac{7\pi}{4}$	$\frac{7\pi}{3}$	$-\frac{13\pi}{6}$	$\frac{13\pi}{2}$	$-\frac{15\pi}{4}$	$-\frac{11\pi}{3}$	$\frac{25\pi}{6}$	$\frac{-9\pi}{2}$
mes. princ.	$-\frac{\pi}{4}$	$\frac{\pi}{3}$	$-\frac{\pi}{6}$	$\frac{\pi}{2}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{6}$	$-\frac{\pi}{2}$
point image	М	С	N	J	В	С	A	J'
$\cos(x)$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	0	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	0
sin(x)	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	1	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	-1

Exercice 8

Une saisie calculatrice donne:

En admettant que cette réponse est correcte, en déduire la valeur exacte de chacun des nombres suivants.

1)
$$\cos\left(\frac{6\pi}{5}\right)$$

Pour cet exercice, on fait « comme si », on rajoutait 1 valeur dans le tableau des valeurs particulières

$$\cos\left(\frac{\pi}{5}\right) = \frac{1+\sqrt{5}}{4}$$

$$\frac{6\pi}{5} = \frac{\pi}{5} + \frac{5\pi}{5} = \frac{\pi}{5} + \pi \operatorname{donc} \cos\left(\frac{6\pi}{5}\right) = \cos\left(\frac{\pi}{5} + \pi\right) = -\cos\left(\frac{\pi}{5}\right) = -\frac{1+\sqrt{5}}{4}$$

2)
$$\cos\left(-\frac{\pi}{5}\right)$$

$$\cos\left(-\frac{\pi}{5}\right)$$

$$\cos\left(-\frac{\pi}{5}\right) = \cos\left(\frac{\pi}{5}\right) \operatorname{car}\cos(-x) = \cos(x) \operatorname{donc}$$

$$\cos\left(-\frac{\pi}{5}\right) = \frac{1+x}{5}$$

$$\cos\left(-\frac{\pi}{5}\right) = \frac{1+\sqrt{5}}{4}$$

3) $\sin\left(\frac{\pi}{5}\right)$

Année 2025-2026 Page 4/7

$$\cos^{2}\left(\frac{\pi}{5}\right) + \sin^{2}\left(\frac{\pi}{5}\right) = 1 \text{ donc}$$

$$\sin^{2}\left(\frac{\pi}{5}\right) = 1 - \cos^{2}\left(\frac{\pi}{5}\right) = 1 - \left(\frac{1+\sqrt{5}}{4}\right)^{2} = 1 - \frac{1+2\sqrt{5}+5}{16} = \frac{16}{16} - \frac{6+26\sqrt{5}}{16} = \frac{10-2\sqrt{5}}{16}$$

$$\text{D'ou}: \sin\left(\frac{\pi}{5}\right) = \frac{\sqrt{10-2\sqrt{5}}}{4}$$

4) $\sin\left(\frac{3\pi}{10}\right)$

$$\frac{3\pi}{10} = -\frac{\pi}{5} + \frac{\pi}{2} = \frac{\pi}{2} - \frac{\pi}{5} \text{ d'ou } \sin\left(\frac{3\pi}{10}\right) = \cos\left(\frac{\pi}{5}\right) = \frac{1+\sqrt{5}}{4}$$
$$\operatorname{car } \cos(x) = \sin\left(\frac{\pi}{2} - x\right)$$

Exercice 9

Une saisie calculatrice donne:

$$\sin\left(\frac{\pi}{10}\right)$$

$$\frac{-1+\sqrt{5}}{4} \approx 0.309017$$

En admettant que cette réponse est correcte, en déduire la valeur exacte de chacun des nombres suivants.

1) $\sin\left(-\frac{\pi}{10}\right)$

$$\sin\left(-\frac{\pi}{10}\right) = -\sin\left(\frac{\pi}{10}\right) = \frac{1-\sqrt{5}}{4} \operatorname{car} \sin(-x) = -\sin(x)$$

2) $\cos\left(\frac{\pi}{10}\right)$

$$\cos^{2}\left(\frac{\pi}{10}\right) + \sin^{2}\left(\frac{\pi}{10}\right) = 1 \text{ d'ou}$$

$$\cos^{2}\left(\frac{\pi}{10}\right) = 1 - \left(\frac{-1 + \sqrt{5}}{4}\right)^{2} = \frac{16}{16} - \frac{1 - 2\sqrt{5} + 5}{16} = \frac{10 - 2\sqrt{5}}{16}$$

$$\operatorname{donc}\cos\left(\frac{\pi}{10}\right) = \frac{\sqrt{10 - 2\sqrt{5}}}{4}$$

3) $\sin\left(\frac{2\pi}{5}\right)$

$$\frac{2\pi}{5} = \frac{\pi}{2} - \frac{\pi}{10} \text{ d'ou } \sin\left(\frac{2\pi}{5}\right) = \sin\left(\frac{\pi}{2} - \frac{\pi}{10}\right) = \cos\left(\frac{\pi}{10}\right) = \frac{\sqrt{10 - 2\sqrt{5}}}{4} \operatorname{car} \sin\left(\frac{\pi}{2} - x\right) = \cos(x)$$

4) $\sin\left(\frac{9\pi}{10}\right)$

$$\frac{9\pi}{10} = \pi - \frac{\pi}{10} \operatorname{donc} \sin\left(\frac{9\pi}{10}\right) = \sin\left(\frac{\pi}{10}\right) = \frac{-1 + \sqrt{5}}{4} \operatorname{car} \sin(\pi - x) = \sin(x)$$

Exercice 10

Sans calculatrice, calculer et réduire au même dénominateur les expressions suivantes. On pourra s'aider du cercle trigonométrique et on indiquera les étapes intermédiaires.

Année 2025-2026 Page 5/7

1)
$$\cos\left(\frac{-\pi}{3}\right) - \sin\left(\frac{-7\pi}{4}\right)$$

$$\cos\left(\frac{-\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) \quad \frac{-7\pi}{4} \text{ a comme mesure principale } \frac{\pi}{4} \text{ donc } \sin\left(\frac{-7\pi}{4}\right) = \sin\left(\frac{-\pi}{4}\right)$$

$$\cos\left(\frac{-\pi}{3}\right) - \sin\left(\frac{-7\pi}{4}\right) = \cos\left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{4}\right)$$
$$= \frac{1}{2} - \frac{\sqrt{2}}{2} = \frac{1 - \sqrt{2}}{2}$$

2)
$$\cos\left(\frac{5\pi}{3}\right) - \sin(2\pi) + \cos\left(\frac{-\pi}{6}\right)$$

$$\frac{5\pi}{3}$$
 a comme mesure principale $-\frac{\pi}{3}$

$$\cos\left(\frac{5\pi}{3}\right) = \cos\left(\frac{-\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right)\sin(2\pi) = \sin(0) = 0$$

$$\cos\left(\frac{-\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right)$$

$$\cos\left(\frac{5\pi}{3}\right) - \sin(2\pi) + \cos\left(\frac{-\pi}{6}\right) = \cos\left(\frac{\pi}{3}\right) - \sin(0) + \cos\left(\frac{\pi}{6}\right)$$

$$= \frac{1}{2} - 0 + \frac{\sqrt{3}}{2} = \frac{1 + \sqrt{3}}{2}$$

3)
$$\cos(-2018\pi) - \cos\left(\frac{-\pi}{4}\right) + \sin\left(\frac{3\pi}{2}\right) - \sin\left(\frac{\pi}{4}\right)$$

$$\cos(-2018\pi) = \cos(0)$$

$$\cos\left(\frac{-\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right)$$

 $\frac{3\pi}{2} \text{ a comme mesure principale} - \frac{\pi}{2} \text{ donc } \sin\left(\frac{3\pi}{2}\right) = \sin\left(\frac{-\pi}{2}\right) = -\sin\left(\frac{\pi}{2}\right)$

$$\cos(-2018\pi) - \cos\left(\frac{-\pi}{4}\right) + \sin\left(\frac{3\pi}{2}\right) - \sin\left(\frac{\pi}{4}\right)$$

$$=\cos(0)-\cos\left(\frac{\pi}{4}\right)-\sin\left(\frac{\pi}{2}\right)-\sin\left(\frac{\pi}{4}\right)$$

$$= 1 - \frac{\sqrt{2}}{2} - 1 - \frac{\sqrt{2}}{2}$$
$$= \frac{-2\sqrt{2}}{2} = -\sqrt{2}$$

4)
$$\cos\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{2}\right) + \sin\left(\frac{4\pi}{3}\right)$$

Année 2025-2026 Page 6/7

$$\frac{4\pi}{3} \text{ a comme mesure principale } \frac{-2\pi}{3}$$

$$-\frac{2\pi}{3} = \frac{\pi}{3} - \pi \quad \text{don } c \sin\left(\frac{4\pi}{3}\right) = \sin\left(\frac{-2\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right)$$

$$\cos\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{2}\right) + \sin\left(\frac{4\pi}{3}\right)$$

$$= \cos\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{2}\right) - \sin\left(\frac{\pi}{3}\right)$$

$$= \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} - 1 - \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$$

Exercice 11

Sans calculatrice, calculer les expressions suivantes. On pourra s'aider du cercle trigonométrique et on indiquera les étapes intermédiaires s'il y en a.

1)
$$\cos^2\left(\frac{-\pi}{13}\right) + \sin^2\left(\frac{-\pi}{13}\right)$$

$$\cos^2\left(\frac{-\pi}{13}\right) + \sin^2\left(\frac{-\pi}{13}\right) = 1 \operatorname{car} \cos^2 x + \sin^2 x = 1$$

2)
$$\cos^2\left(\frac{-\pi}{6}\right) - \sin^2\left(\frac{-\pi}{6}\right)$$

$$\cos^2\left(\frac{-\pi}{6}\right) - \sin^2\left(\frac{-\pi}{6}\right) = \left(\frac{\sqrt{3}}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = \frac{3-1}{4} = \frac{2}{4} = \frac{1}{2}$$

3)
$$\sin\left(\frac{-5\pi}{6}\right) \times \cos\left(\frac{2\pi}{3}\right) - \cos(-\pi)$$

$$-\frac{5\pi}{6} = \frac{\pi}{6} - \pi \operatorname{donc} \sin\left(\frac{-5\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) \operatorname{et} \cos(-\pi) = \cos(\pi)$$

$$\frac{2\pi}{3} = \pi - \frac{\pi}{3} \operatorname{donc} \cos\left(\frac{2\pi}{3}\right) = -\cos\left(\frac{\pi}{3}\right)$$

$$\sin\left(\frac{-5\pi}{6}\right) \times \cos\left(\frac{2\pi}{3}\right) - \cos(-\pi) = -\sin\left(\frac{\pi}{6}\right) \times \left(-\cos\frac{\pi}{3}\right) - \cos(\pi)$$

$$= \frac{1}{2} \times \frac{1}{2} - 0 = \frac{1}{4}$$

4)
$$\frac{\sin\left(\frac{\pi}{4}\right)}{\cos^2\left(\frac{\pi}{3}\right)}$$

$$\frac{\sin\left(\frac{\pi}{4}\right)}{\cos^2\left(\frac{\pi}{3}\right)} = \frac{\frac{\sqrt{2}}{2}}{\left(\frac{1}{2}\right)^2} = \frac{\frac{\sqrt{2}}{2}}{\frac{1}{4}} = \frac{\sqrt{2}}{2} \times 4 = 2\sqrt{2}$$

Année 2025-2026 Page 7/7