Chapitre 1

Généralités sur les fonctions

Intervalles de \mathbb{R} I.

Définition d'un intervalle 1)

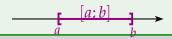
Définition

Soient a et b deux nombres réels avec a < b:

L'ensemble des réels x tels que $a \le x \le b$ est l'**intervalle** [a;b].

Il contient tous les nombres compris entre *a* (inclus) et *b* (inclus).

On peut le représenter sur la droite réelle.



Example: I'intervalle [-3; 5] contient tous les nombres compris entre -3 (inclus) et 5 (inclus).

$$\begin{bmatrix}
-3;5\\
-3&0
\end{bmatrix}$$

Proof. Remarque On utilise les symboles \in "appartient" et \notin "n'appartient pas".

Différents types d'intervalles 2)

Soient a et b deux nombres réels avec a < b:

L'ensemble des réels x tels que :

$$a \leqslant x \leqslant b$$
 est l'intervalle $[a;b]$
 $a < x < b$ est l'intervalle $[a;b]$
 $a \leqslant x < b$ est l'intervalle $[a;b[$
 $a \leqslant x \leqslant b$ est l'intervalle $[a;b[$
 $a < x \leqslant b$ est l'intervalle $[a;b]$
 $a \leqslant x$ est l'intervalle $[a;+\infty[$
 $a \leqslant x$ est l'intervalle $[a;+\infty[$
 $a \leqslant x$ est l'intervalle $[a;+\infty[$

Année 2024-2025 Page 1/12

$$x \le b$$
 est l'intervalle $]-\infty;b]$ $]-\infty;b]$ b $x < b$ est l'intervalle $]-\infty;b[$ $[]-\infty;b[$

Remarques

- $+\infty$ se lit "plus l'infini" et $-\infty$ se lit "moins l'infini",
- l'intervalle [a ; b[est **fermé** en a (crochet tourné vers l'intérieur de l'intervalle) : $a \in [a; b]$, et est **ouvert** en b (crochet tourné vers l'extérieur de l'intervalle) : $b \notin [a; b]$,
- on écrit toujours] $-\infty$ et $+\infty$ [(intervalles ouverts).

> Exemple:

Inégalité	Signification	Notation	Représentation
$2 \le x \le 5$	x est compris entre 2 (inclus) et 5 (inclus)	$x \in [2; 5]$	[2;5] 2 5
$-3 < x \le 2$	x est compris entre -3 (exclu) et 2 (inclus)	$x \in]-3;2]$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ -3 \end{array} \begin{array}{c} \end{array} \\ \begin{array}{c} \\ 2 \end{array}$
$-5 \le x < -1$	x est compris entre -5 (inclus) et -1 (exclu)	$x \in [-5; -1[$	$ \begin{array}{c c} & [-5;-1[\\ \hline & -5 & -1 \end{array} $
-2 < x < 8	x est compris entre -2 (exclu) et 8 (exclu)	$x \in]-2; 8[$	$\frac{]-2;8[}{-2}$
$8 \le x$	<i>x</i> est supérieur <mark>ou égal à 8</mark>	$x \in [8; +\infty[$	$\frac{[8;+\infty[}{8}$
x > 0	<i>x</i> est strictement supérieur à 0	$x \in]0; +\infty[$	$\frac{1^{]0;+\infty[}}{0}$
$x \le -5$	x est inférieur ou égal à −5	$x \in]-\infty;-5]$	$\frac{]-\infty;-5]}{-5}$
7 > x	<i>x</i> est strictement inférieur à 7	$x \in]-\infty; 7[$	<u> </u>

Remarque Dans l'intervalle [a;b], le nombre b-a s'appelle l'**amplitude** de l'intervalle.

Page 2/12 Année 2024-2025

3) Intersection et réunion d'intervalles

Définition

Soient I et J deux intervalles de \mathbb{R} ,

- L'intersection des intervalles I et J, notée $I \cap J$ est l'ensemble des réels qui appartiennent
 - à la fois àl'intervalle *I* et à la fois à l'intervalle *J* (les deux en même temps)
- La réunion des intervalles I et J, notée $I \cup J$ est l'ensemble des réels qui appartiennent à l'intervalle I soit à l'intervalle J soit aux deux (l'un des deux ou les deux).

Remarques

 \cap se lit *inter*

 \cup se lit union

 $x \in I \cap J$ se lit $x \in I$ ET $x \in J$

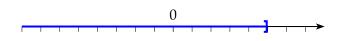
 $x \in I \cup J$ se lit $x \in I \cup J \subseteq J$

> Exemple:

Soient les intervalles $I =]-\infty;3]$ et J =]-3;5], on veut déterminer $I \cap J$ et $I \cup J$.

On représente I (en vert) et J (en rouge) sur la droite réelle :

- *I* ∩ *J* correspond à la partie de la droite colorée en vert ET en rouge
 I ∩ *I* =] − 3; 3]
- 0
- *I* ∪ *J* correspond à la partie de la droite colorée en vert **OU** en rouge, c'est à dire soit vert, soit rouge, soit les deux.



$$I \cup J =]-\infty;5]$$

Remarque $x \neq b$ signifie que x est soit strictement plus petit que b, soit strictement plus grand que b.

On écrit cet intervalle $]-\infty; b[\cap]b; +\infty[$

Exemple: L'ensemble des réels non nuls \mathbb{R}^* correspond à $x \neq 0$. Il peut s'écrire sous la forme d'une réunion d'intervalles $]-\infty$; $0[\cup]0$; $+\infty[$ ou encore $\mathbb{R}\setminus\{0\}$

L'expression $\frac{4x+5}{x-7}$ est définie pour $x \in]-\infty$; $7[\cup]7; +\infty[$

Année 2024-2025 Page 3/12

II. Vocabulaire et notation

Intro

Dans un salle de spectacle, l'achat d'un abonnement à 30 € permet d'avoir un tarif réduit sur les places de spectacle et de la payer 15 €.

Prix du spectacle pour :

- 2 places : $30 + 2 \times 15 = 60$ €
- 4 places : $30 + 4 \times 15 = 90 \in$
- 10 places : $30 + 10 \times 15 = 180 \in$
- $x \text{ places} : 30 + x \times 15 = 30 + 15x \in$

Pour un nombre de places donné, on fait correspondre le prix à payer.

Par exemple : $2 \mapsto 60$ $10 \mapsto 180$

De façon générale, pour x places, on note : $x \mapsto 30 + 15x$

 $x \mapsto 30 + 15x$ se lit « à x, on associe 30 + 15x »

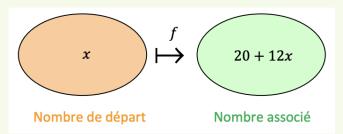
La correspondance qu'on a établie entre x et 30 + 15x peut porter un nom.

Vocabulaire

Vocabulaire et notations On va l'appeler f, et on note :

$$f: x \mapsto 30 + 15x$$

f est appelée une fonction. C'est une « machine » mathématique qui, à un nombre donné, fait correspondre un autre nombre.



x est appelée la variable.

On note également :

$$f(x) = 30 + 15x$$

Remarque f(x) se lit «f de x».

Exemple: $f: 10 \mapsto 150$ peut donc s'écrire : f(10) = 150

On peut résumer les résultats précédents dans un tableau qui s'appelle tableau de valeurs.

х	2	4	10
f(x)	60	90	180

Page 4/12 Année 2024-2025

Méthode - Résoudre un problème à l'aide d'une fonction

Enoncé: On donne le programme de calcul suivant :

- Choisir nombre
- un
- Enlever 4
- Multiplier par 3
- Ajouter 7
- 1) Appliquer le programme en prenant 5 comme nombre de départ.
- **2)** On prend *x* comme nombre de départ. Donner le résultat du programme en fonction de *x*.
- 3) On appelle f la fonction qui associe à x le résultat du programme. Donner l'expression de la fonction f à l'aide des deux notations suivantes : $f: x \mapsto \dots f(x) = \dots$
- 4) Compléter le tableau de valeurs :

X	5	8	12
f(x)			

réponse:

- 1) En prenant 5 au départ :
 - 5
 - 5 4 = 1
 - $3 \times 1 = 3$
 - 3+7=10

En prenant 5 au départ, on obtient 10.

- **2)** En prenant *x* au départ :
 - γ
 - \bullet x-4
 - $3 \times (x-4)$
 - $3 \times (x 4) + 7$

En prenant x au départ, on obtient 3(x-4)+7.

On peut simplifier l'expression :

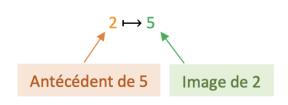
$$3 \times (x-4) + 7 = 3 \times x + 3 \times (-4) + 7$$
$$= 3x - 12 + 7$$
$$= 3x - 5$$

- 3) $f(x) = 3x 5 f : x \mapsto 3x 5$
- 4) $\begin{array}{|c|c|c|c|c|c|c|c|}\hline x & 4 & 6 & 10 \\\hline f(x) & 7 & 11 & 19 \\\hline & 3 \times 4 5 \\ & = 12 5 \\ & = 7 \\\hline \end{array}$

III. Image, Antécédent

1) image et antécédent

Example: Dire que : f(2) = 5 signifie que :



Vocabulaire

On dit que:

- l'image de 2 par la fonction *f* est 5.
- un antécédent de 5 par *f* est 2.

⊞ Méthode - Déterminer une image et un antécédent par une fonction

Enoncé:

Soit le tableau de valeurs suivant de la fonction f:

X	-4	6	10	18	20		
f(x)	18	20	-4	38	18		

Compléter alors :

- 1) L'image de -4 par f est ...
- **2)** $f: ... \mapsto -4$
- 3) $f(20) = \cdots$
- **4)** Un antécédent de 18 par *f* est ...

réponse:

- 1) L'image de -4 par f est 18, car $-4 \mapsto$
- **2)** $f:10 \mapsto -4$
- 3) f(20) = 18
- 4) Un antécédent de 18 par f est -4 ou 20, car f(-4) = 18 et f(20) = 18.

Remarques

- Un nombre peut posséder plusieurs antécédents. Par exemple : Ici, des antécédents de 18 sont -4 et 20 .
- Cependant, un nombre possède une unique image.

Enoncé:

Soit la fonction g définie par $g(x) = x^2 - 2$. Calculer l'image de 6 par la fonction *g*.

réponse:

$$g(x) = x^2 - 2$$

$$g(6) = 6^2 - 2$$

$$g(6) = 36 - 2$$

$$g(6) = 34$$

L'image de 6 par la fonction *g* est 34.

₹ Méthode - Déterminer un antécédent par calcul

Enoncé:

Soit la fonction f définie par f(x) = 2x - 3. Déterminer un antécédent de -5 par la fonction f.

On cherche un antécédent de -5 donc -5 est L'antécédent de -5 par f est donc -1. une image.

On peut donc écrire : f(x) = -5

Soit :
$$2x - 3 = -5$$

On résout ainsi l'équation :

$$2x = 3 - 5$$

$$2x = -2$$

$$x = -1$$

Ensemble de définition

Définition

L'ensemble de définition D_f d'une fonction f dont l'ensemble de départ est noté E et l'ensemble d'arrivée F est l'ensemble des éléments de E qui possèdent une image dans F par f, autrement dit l'ensemble des éléments x de E pour lesquels f(x) existe.

Attention

Les restrictions des domaines de définitions concernent les $\sqrt{\dots}$ et les $\stackrel{\dots}{\dots}$.

Autrement dit \sqrt{A} existe ssi $A \ge 0$ et $\frac{A}{B}$ existe ssi $B \ne 0$.

ﷺ Méthode - Déterminer le domaine de définition d'une fonction)

Trouver le domaine de définition des fonctions suivantes :

$$1) f: x \longmapsto \sqrt{x+1}$$

$$2) g: x \longmapsto \frac{1}{2x}$$

3)
$$h: x \longmapsto \frac{3x-2}{x+4}$$

réponse:

1) Soit
$$f: x \longmapsto \sqrt{x+1}$$

 $f(x)$ existe ssi $x+1 \ge 0$
 $\text{ssi } x \ge -1$
 $\text{donc D}_f = [-1; +\infty[$

2) Soit
$$g: x \longmapsto \frac{1}{2x}$$
 $g(x)$ existe ssi $2x \neq 0$
 $\sin x \neq 0$
donc $D_g = \mathbb{R} \setminus \{0\}$

2) Soit
$$g: x \longmapsto \frac{1}{2x}$$
 3) Soit $h: x \longmapsto \frac{3x-2}{x+4}$ $g(x)$ existe ssi $2x \neq 0$ ssi $x \neq 0$ ssi $x \neq -4$ donc $D_g = \mathbb{R} \setminus \{0\}$ donc $D_f = \mathbb{R} \setminus \{-4\}$

IV. Représentation graphique d'une fonction

Construction d'une courbe

🔁 Méthode - Déterminer un antécédent par calcul 🕽

Soit la fonction f définie par $f(x) = 5x - x^2$.

On donne un tableau de valeurs de la fonction *f* :

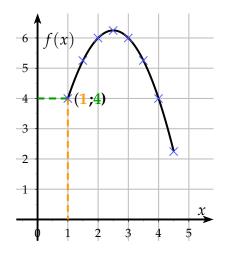
		<u> </u>						
\boldsymbol{x}	1	1,5	2	2,5	3	3,5	4	4,5
f(x)	4	5,25	6	6,25	6	5,25	4	2,25

Tracer, dans un repère, la courbe représentative de la fonction f.

réponse:

On représente les données du tableau de valeurs dans un repère tel qu'on trouve en abscisse les valeurs de x et en ordonnée les valeurs de f(x) correspondantes. En reliant les points, on obtient une courbe.

Tout point de la courbe possède donc des coordonnées de la forme (x; f(x)).



Remarque Les images f(x) se lisent sur l'axe des ordonnées (y) donc la courbe représentative de la fonction f définie par $f(x) = 5x - x^2$ peut se noter $y = 5x - x^2$. De façon générale, l'équation d'une courbe se note y = f(x).

Méthode - Vérifier si un point appartient à la courbe d'une fonction

Enoncé:

Soit la fonction f définie par $f(x) = x^2 + 3$

Vérifier que le point de coordonnées (-2;7) appartient à la courbe de f.

réponse:

Le point de coordonnées (-2,7) appartient à la courbe si f(-2) = 7.

 $f(-2) = (-2)^2 + 3 = 4 + 3 = 7$

Donc le point de coordonnées (-2,7) appartient à la courbe de f.

2) Lecture graphique d'une image et d'un antécédent

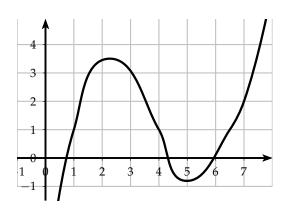
Méthode - Lire graphiquement une image et un antécédent

Enoncé:

On considère la fonction f représentée cicontre.

Déterminer graphiquement :

- 1) L'image de 7 par la fonction f.
- **2)** Trois antécédents de 1 par la fonction *f* .



réponse:

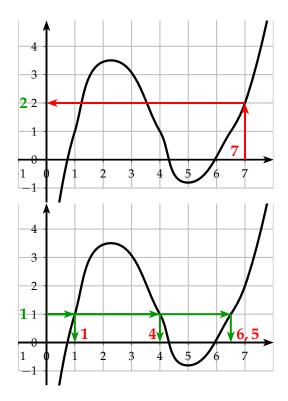
Page 8/12 Année 2024-2025

1) Pour déterminer l'image de 7 , on « *part* » de l'abscisse 7, on « *rejoint* » la courbe et on lit la valeur correspondante sur l'axe des ordonnées.

On lit donc que l'image de 7 est 2.

On peut noter : f(7) = 2.

2) Pour déterminer des antécédents de 1 , on « part » de l'ordonnée 1 , on « rejoint » la courbe et on lit les valeurs correspondantes sur l'axe des abscisses. On lit donc que des antécédents de 1 sont 1, 4 et 6, 5. On peut par exemple noter : f(4) = 1.



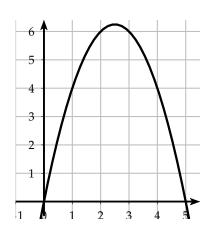
V. Résolution graphique d'équations et d'inéquations

Méthode - Résoudre graphiquement une équation

Enoncé:

On a représenté la courbe de la fonction f définie par $f(x) = 5x - x^2$.

Résoudre graphiquement l'équation $5x - x^2 = 4$.



Année 2024-2025 Page 9/12

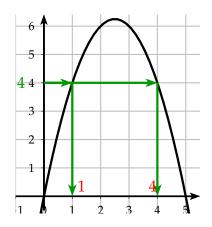
réponse:

L'équation $5x - x^2 = 4$ peut s'écrire f(x) = 4.

Ce qui revient à trouver des antécédents de 4 par la fonction f.

On « part » de l'ordonnée 4, on « rejoint » la courbe et on lit les solutions sur l'axe des abscisses : x = 1 ou x = 4.

On peut noter : $S = \{1; 4\}$.



Remarques

- Par lecture graphique, les solutions obtenues sont approchées.
- L'équation f(x) = 7, par exemple, ne semble pas avoir de solution car la courbe représentée ne possède pas de point d'ordonnée 7.
- Graphiquement, on ne peut pas être certain que les solutions qui apparaissent sont les seules. Il pourrait y en avoir d'autres au-delà des limites de la représentation graphique tracée.

Méthode - Résoudre graphiquement une inéquation

Enoncé:

Dans la méthode précédente, on a représenté la courbe de la fonction f définie par $f(x) = 5x - x^2$.

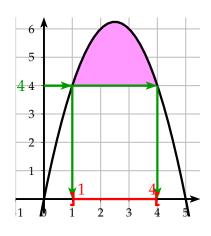
Résoudre graphiquement l'inéquation $5x - x^2 > 4$.

réponse :

L'inéquation $5x - x^2 > 4$ peut s'écrire f(x) > 4 Ce qui revient à déterminer les points de la courbe dont l'ordonnée est strictement supérieure à 4. On lit les solutions correspondantes sur l'axe des abscisses :

x est strictement compris entre 1 et 4.

On peut noter : S =]1;4[



Page 10/12 Année 2024-2025

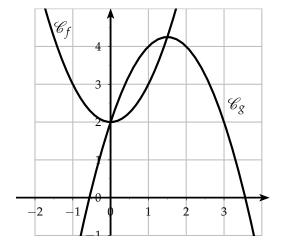
\Xi Méthode - Résoudre une équation ou une inéquation du type : f(x) = g(x), f(x) < g(x)

Enoncé:

On a représenté les courbes des fonctions f et g définies par :

$$f(x) = x^2 + 2$$
 et $g(x) = -x^2 + 3x + 2$

- 1) Résoudre graphiquement l'équation f(x) = g(x).
- 2) Résoudre graphiquement I'inéquation f(x) < g(x).



réponse:

1) f(x) = g(x) lorsque les courbes se croisent.

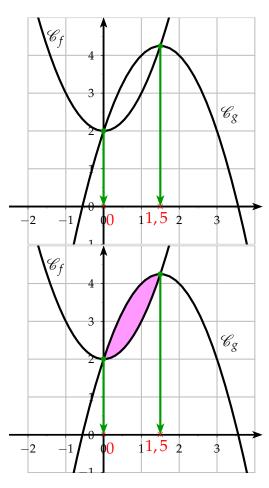
II suffit de lire l'abscisse des points d'intersection des deux courbes.

On lit les solutions sur l'axe des abscisses : 0 et 1,5.

On peut noter : $S = \{0, 1, 5\}$.

2) f(x) < g(x) lorsque la courbe de g se trouve au-dessus de la courbe de f. On lit l'ensemble des solutions sur l'axe des abscisses : l'intervalle]0;1,5[. On peut noter : S =]0;1,5[.

Les valeurs 0 et 1,5 sont exclues de l'ensemble des solutions car dans l'inéquation f(x) < g(x) l'inégalité est stricte.



Année 2024-2025 Page 11/12

VI. Parité

Définitions

- Une fonction dont la courbe est symétrique par rapport à l'axe des ordonnées est une fonction paire.
- Une fonction dont la courbe est symétrique par rapport à l'origine du repère est une fonction impaire.

Remarques

- Pour une fonction paire, on a : f(-x) = f(x).
- Pour une fonction impaire, on a : f(-x) = -f(x).

Ce sont ces résultats qu'il faudra vérifier pour prouver qu'une fonction est paire ou impaire.

Méthode - Vérifier la parité d'une fonction

Enoncé:

- 1) Montrer que la fonction $f(x) = 3x^2 + 2$ est une fonction paire
- 2) Montrer que la fonction g(x) = 2x est une fonction impaire

réponse:

- 1) On cherche à montrer que f(-x) = f(x) $f(-x) = 3 \times (-x)^2 + 2 = 3 \times x^2 + 2 = f(x)$ car $(-x)^2 = x^2$ Comme on a f(-x) = f(x), la fonction f est donc paire.
- 2) On cherche à montrer que g(-x) = -g(x) $g(-x) = 2 \times (-x) = -2 \times x = -(2x) = -g(x)$ Comme on a g(-x) = -g(x), la fonction g est donc paire

Remarque Si il est trop compliqué de prouver directement que la fonction est paire ou impaire, il ne faut pas hésiter à essayer 2 ou 3 valeurs d'abord (essayer avec f(2) et f(-2) par exemple). Cependant, cela ne sera pas suffisant pour prouver que la fonction est paire ou impaire.

Page 12/12 Année 2024-2025